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Baron, who has been rartially supoorted under this grant, is conti-
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controllability of distributed oarameter systems and coefficient
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Computational studies performed with the UW MACC 1110 Comtuter

and funded under this grant have enabled us to develor a new and

effective procedure for identification of the neriod of an oscil-

latory disturbance, paving the way for adaptive control of certain

flutter phenomena.

WOTI 2 h .. . .. ', E-

Thi3 t
nppr:- "!. -:--

Distril *

MATTHEW J. --.
Cbief, Technioal InformatiOn DiviSiOn

- -w! -- C *.
,- -~ ~ ~ * **.~* ... ~.C".*~



3.

2. Technical Aooendices.

The remainder of this reDort consists of two technical arnen-

dices as follows:

Arvendix I: The Dirichlet-Neumann Boundary Control Problem
Associated with Maxwell's Equations in a Cylin-
drical Region

Aonendix II: Dual Paley-Wiener Sraces and "Regular" Nonharmonic
Fourier Series

Both of these are authored by the Frincipal Investigator.
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APPENDIX I

The Dirichlet-Neumann Boundary Control

Problem Associated with Maxwell's

Eouations in a Cylindrical Region

This work was also supported in 'mart by the Army Research

Office under Contract DAAG29-8O-C-0O41.



SIGNIFICANCE AND EXPLANATION

This paper concerns the controllability of the Maxwell electromagnetic

equations in a cylindrical spatial region by means of controlling currents

caused to flow on the boundary of the region. Here controllability refers to

the ability to transfer from electric and magnetic fields, given at the

initial instant, to corresponding fields prescribed at a later instant.

Studies of this type are significant in relation to wave guides, EM-pulse

devices, radar non-relective (stealth) aircraft, controlled thermonuclear

fusion and many other important applications.



THE DIRICHLZET-H INKNN BOUNDARY CONTROL PROBLEM ASSOCIATED
WITH PAXWLL°S EQUATIONS ZN A CYLINDRICAL REGION

D. L. Russell

Zn this paper we consider a region 0 ( R3 , not necessarily bounded, having piecewise

smooth boundary r and almost everywhere uniquely defined unit exterior normal vector

V , v(xyoz), (x~y,z) e r. It is assumed that the region 0 is occupied by a medium

having constant electrical permitivity C and constant magnetic permeability i. We have

then, in fi, the paired electric and magnetic fields

X - *(xy,z,t)

having finite energy

x(t) -t/3Sif (e tn12 + pollI2 )dv (1.1)
A

where l I denotes the usual Euclidean norm in R3 . As is well known ((41, (9)), £ and

Ssatisfy, In o, Maxwell's equations

curl H K - , (1.2)

div I p , (1.4)

div I - 0 , (1.5)

where P - p(x,y,s,t) is the electrical charge density in 8 - which is zero throughout

this paper. (That equation (1.5) might eventually have to be modified to account for

magnetic monopoles will trouble us not at all herel)



Control problems associated with Maxwell's equations have been of interest primarily

in connection with nuclear fusion applications - in which case p is not identically equal

to zero and the Naxwell equations are coupled with the dynamical equations governing the

plasma evolution. In this connection we cite the work of P. K. C. Wang (291, (301, [31].

The point of view which we take here is that we cannot hope to treat these more complicated

problems until we have a firmer grasp on the control theory of Maxwell's system in its Own

right. In this direction some work on controllability with control influence distributed

throughout 0 has been carried out by G. Chen (21, (3. We are primarily concerned here

with the possibility of influencing the evolution of the fields I and A by means of an

externally determined current S(xyz.t) flowing tangentially in r so that

S(x,y,z,t)*V(xyz) . 0 , (1.6)

for (x,y,z) e r where V(xyz) is defined. We will assume that the normal component of

I vanishes outside 1 and that no charge is permitted to accumulate on r. Then we have

the boundary conditions (see e.g. [41, (281)

e (xy,zft)°+(x,ywz) - 0 (1.7)

Ia.(xy#z,t) - *(xy,z) x 3(xy,z,t) (1.8

for (x,y,z) e r such that v(xyoz) is well-defined. Here, and subsequently, the

subscript T refers to the component of the vector in question which is tangential to r.

Similarly, the subscript V will denote the normal component (thus (1.7) is the same as

tV " 0). Writing

V

f-E f - on F,
I/ • •

3-3 V+3 3 on r,

we see that (1.8) becomes AT V X it so that NT  is a vector tangential to r and

perpendicular to 3 - 3 "

The state space in which we study solutions of the above system will be denoted by

9 Sd (2); it is a closed subspace of the space Hi(Q) of square integrable six-

dimensional fields (1(x,y~z,t), (x,y,z,t)) with the inner product and norm

-2-



- 7---77 IF 7-777 77- 77

(

1' 1 2' 2 )> (C1. 2f + JA1. 2 )dv

,i -<(,a),(EI,) . (1.9)

Clearly %(A) is a real Hilbert space with this inner product. Where a complex space in

required, we employ conjugation as usual. The state space H (,d(0) is the closed span in

H (0) of those continuously differentiable fields (*(x,yz,t), H+(x,y,xt)) for vhich

div 3% az3y az 0

H aW 3H
div H + v x + + - 0

if tO- O and 11 are two smooth solution pairs for (1.2)-(1.5), (1.7), (1.8),

the first corresponding to 3 2 0 on r, we see easily that

-d Cdfo, ),(IfNJ)>-

0fa 111 (42[6 Tr2 + *t Z11 + vi(11* rt- + y- H]d

- (using (1.2), (1.3)) =

( / 00 curl RI - curl to. a I curl A0 -1 - A 0. curlZ+ I1)dv

(using div (Z x H) - curl A - I • curl it)

" " Il Cdiv(lo 4A1 ) + div( 1  Ao)1dv

" - A Io I I o) a 0 a - (using (1.7))
r

r 10 r aIT+a OT X V+IITx41+I it A Ov d

7 -3-
'!"
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"- (toy 39 J1 J1 X 4oT ) " Vd,
r

- (using (1.8) and noting that 3 0 for lt 10 )

If (-01" 9)ds • (1.10)
r

If we go through the same computation with f0,,, both replaced by the same E,H

satisfying (1.2)-(1.5), (1.7), (1.8) we find that

If (I x A) • (1.11)
S r r

For 3 E 0 generalised solutions of (1.2)-(1.5), (1.7), (1.8) can be discussed in the

general context of partial differential equations and strongly continuous semigroups. The

generator

- curl -- Curl (1.12)

with domain consisting of 1,A in the Sobolev space 8 ()(,.H4 (2) U 1(I)) having
2,d 3,d

sero divergence and satisfying (cf. (1.7), (1.8))

A lr 0 4, -o " (1.13)

Is antisymmetric and generates a group of isometries In Ed(0). (See (321, (331, (341

for related work.) Sufficient conditions on I so that solutions of the inhomogeneous

system (1.2)-(1.S), (1.7), (1.8) IL* in ud(a ) and are strongly continuous there may be

obtained much as in (161, (191 but it is not easy to specify necessary and sufficient

conditions. Indeed, this is already difficult for the much simpler, but related, wave

equation

S32w
2v + a2 v+ 32v

at 2  Ix2  a y 3 2

with boundary forcing terms. we will make some coments related to this in Section 6.

-4-

.,]1~* -



&

2. CONTROL PROBLEMS IN A CYLINDRICAL REGION

The main point in this paper is to study the question of controllability of the

electromagnetic field #.A by means of the boundary current 3 1 ST. By controllability

we mean the possibility of transferring an initial field I(xy,z,0), A(xyz,0) e

H Rd (0), given at time t - 0, to a prescribed terminal field 3(xy,z.T),

*( x,y,zT) e %Bd(Q), specified at t - T > 0, by means of a suitable control current

I(x,yx,t) defined for (xy,z) e r, t a (0,T]. Because the homogeneous Maxwell

equations correspond to a group of isometries in H ,d(0), it is enough to consider the

special case wherein

I(xya,0) 5 0 , (2.1)

A(xy,:,0) 3 0 . (2.2)

For a given space, J. of admissible control currents 3(xyzt) T S(x,y*z,t) defined

on r x 10,T] we define the reachable set R(T,J) to be the subspace of HZ,d ()

consisting of states reachable from the zero initial state using controls 6 e J.

Following earlier definitions (8], (26)), our system is approximately controllable in

time T if R(T,J) is dense in H1, d(a) and exactly controllable in time T if

R(T,J) - H1
,d(f) (or some precisely designated subspace of HE'd(11)).

At this writing we are not able to discuss the general three dimensional problem

wherein the vector fields I and A are unrestricted, except as stipulated heretofore,

and Q has a general geometry. We hope in later work to consider at least some three

dimensional cases which arise for special domains 0. But for now we eist content

ourselves with the case in which 0 is a cylinder:

R ((x,y,z)I(x,y) a R C R2 , z real)

where t is an open connected region in R
2 

with piecewise smooth boundary B. Thus

4 ;30 - 3R x (-,-) - a x (--,m)

3ven here we can give results only for special two dimensional regions R.

The two dimensional problem in the cylinder 0 R it x C-,m) occurs when we confine

attention to fields

E - 3(x,y,t), H - H(Xyt)
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which do not depend on the coordinate z correspondinq to the axial, or longitudinal,

direction of the cylinder. (Note that this is not at all the same thing as requiring

that Ez e Hz. the field components in the z direction, should be zero.) We

correspondingly consider only control currents

J J(X,y,t)

which do not depend upon z.

Of course the energy Z in 0 is infinite under the above circumstances if .,

are not identically zero. We redefine R to be the energy per unit length of cylinder:

E(t) 1/2f1 (C3l(xyt)j2 + iIAA(x,y,t)12)dxdy . (2.3)
R

The space H (0) is now replaced by HE d(R). Because
N,d d

aF (x,y,t) 3Hz(X,y,t)
O , Z

az Bz

we have

3E 3E 3H 3H
div -a-+ • Y div -a-+ y (2.4)

The curl expressions simplify to

3E aE 3E DE

cur = ayZ' xZ' ax B y X

3H 3H 3H 3H
cur 2 y X)- -x By

so that the equations (1.2), (1.3) become

BE 311 BH

3E 3H 3H BE
y z _ z

3E 31H 1 3Ht 3E

CL) at - 3-x - (v) P at y.ax (2.5)

aE z a_.. a H a H 3 +

C. BT ax ay (vi) U at ax By

-6-



It is clear from (2.5), Ci)-(vi), that if A(x,y,O), *H(x,y,O) are given, then the

subsequent evolution of Ez(x,y,t), Hz(xy,t) determine all of the other components. As

for these components themselves, differentiating (2.5) (iii) and (2.5) (vi) with respect

* .. to t and then substituting (2.5) (iv), (v) and (2.5) i), (ii) into the respectively

resulting expressions, we obtain the familiar wave equations

i UC - - Z + Z (2.6)

at
2  x 2  ay

a 2 H 32 H a2 H

meat 2Z-3x2 Z+ay2 (.7

;. valid for Cx,y) e R, t e (o,-), provided Ez, HZ have enough derivatives, or provided

the equations are interpreted in the distributional sense. Assuming the initial states

I(x,y,O), H(x,y,O) are divergence-free, we compute (cf. (2.4))

a + - - (using (2.5) (1), (11))

3 2 H a)2H

• -- o

and similarly

It 3x ay

* and we conclude that the fields remain divergence-free for all time.

Suppose, then, that divergence-free initial states ICXyO), A(x,y,O) are given.
3E

Then 9,(x,y,O), H(xy,O) are known and (2.5) (iii), (vi) determine at Ix,y,O) and

--- (x,y,O). If (2.6), (2.7) are then solved with these initial conditions, and

appropriate boundary conditions, the complete solution of Maxwell's equations (2.5)

M(i-vi), can he obtained by integrating (2.5) (i), (11), (iv), (v). Thus it is enough to

work with (2.6), (2.7), and it should be noted that the divergence condition does not have

any bearing on SZE Hz; it can be ignored henceforth.

-7-
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Figure 1. The Region It

It is important to recast the boundary conditions (1.7), (1.8) so that they provide

boundary conditions for (2.6), (2.7). We ask the reader to consult Figure 1, where the

region R with boundary )R - 2 is shown. At a point (x,y) e a we let t - 4(x,y)

denote the unit exterior normal to B and we let 9 - @(xy) denote the positively

oriented unit tangent vector to 8 there. With , the unit vector in the positive z

direction, 0, to t form a positively oriented orthogonal triple of unit vectors. Given

an arbitrary vector v we can decompose it as

w - (w V.WO, C(-v )),

vI. 2 . w2  + 2

VD a z

The tangential part of 1, which we have designated as m may now be represented as

Ai = H 1(2.8)

and the current s - S may likewise be represented as
- + J •

Then

-6-J



V x x x (J +jj)-- +1J (2.9)

Combininq 1.0), (2.8), (2.9) we see that on a

"z(X,yt) - JO(xyt) * (2.10)

H3(x,yt) "-Jz(X,y,t) . (2.11)

Represent Vy a as

V t (2.12)

-a '.a + C - -V + t + i *. (2.13)

Then compute

a - v - v - (uing (1.3) , (2.13)

3V 3•x ..3

M 11 t0O + is ex 1z -

.. "~~~ (agi~ng 12.11)11,- .1.4

~The equations (2.10), (2.14) provide the needed bounry condtions for (3.6). (3.?)

repectively. Fr %! we bave the Dirioklet-type bom"r onmdition (2.10) wkl*L tot

•z w e have the Nome~n-tylpe boundary condi~tion (2.14 ). it we lot
i (x.yt) (XYt)

ands differentiLate (2.10), we have the aowe symmetric form,

an a a

ita(x#yft) 0 UV(X,y~t), T - -/8(x~y,t), (x,y) e a .S

We complete this sectio by discussing the question of ewpressi~on of the enerw per

unit cylindemr length, (2.3), solely in terms of Hs8 and as .

Wo consLier the equatiLons (2.6), (2.7) with homogenecus boundary condition*

M 3--

-- (X,y,t)- 0. T (x,yt) - 0, (xy) * a

(2.14

The~ ~ ~~~~~~~O eqain 21) 21)pv.teneedbmdx sdteefw(.) 27



We use the symbol A for the Laplacian:

32 32
;£ *-+ ; *

3 Sy

Initially we take H2' ZZ to lie. in the Sobolew space H 2 (R). This space must be

decomposed in order to attach a meaning to .

The boundary condition for Hz may be rewritten as

HZ(x.y,t) - h(x~y), (x,y) e 3

where, by the trace theorem, h e H312(3). Then we can write

112(x~y~t) z (XY~t) +~ 2r (x,y)
where 81a (x~y) is the solution of

AR (x~y) -0, H z(x,y) - h(x~y), (x,y) e a

and

H (xy,t) 0 , (x~y) 63B

The Inver** Laplacian A~is well defined on the functions is For 8, ve may write

32(x,y,t) - 3(x'yt) + i (t)

where is# as indicated, is constant with respect to (x,y) e a and

I3(x~y,t)ds - 0
3

It is vel known that I* isavel defined on the functions 3

We go-seeA first on the assumption that

U3(x.y.t) - ;2(X.y .t). R2(x,Y,t) - 3(x'y't)

we temi new solutions of (2.6), (2.7) by setting

Ia IF' ."

we them determine Ga* F V, F~ using the equations (2.5) with 8replacing .F

replacing I.so that Fand satisfy Maxwell's equations:

-10-
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It will1 then be found tchat

ar

C=curl Gar

3,,J2 ar 2  a1 3r 2

2f, -1' *ax (aA ( -) a

R

aG 2 3G 2 IQ SQ 2
+"+ ("[.' ' ( - ] -d dy (2.16)

Then from (2.16) we have

JF 2 3? 2 DG 2

- ! (c[(r-) + (ay) + (U at'SG 2 4G 2 3F 2

+ [(1 x-.) + (--) + (UC)2]ddy

Now consider the quadratic form (for 3z - z

-11-
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2 2

and the boundary conditions Gz(X,y,t) o , (x,y) e B)-

I ( i- .FG I u 3G Z)2 3G )2

It t JC a

Similarly

an anz 3F x1 2 3F a

from (hh It folloh itat

Itt

I finiLte states - a fact which will be very careful later.

It Is necessary to wtxify thise xpression for general Iz s .  e begin with

zz(x,yt) - ( (t) - 0

The only possible solutions of the wave equation (2.6) satisfying - " 0 and having

this frm are

rs(xfyot) - 00 +e*It

where e 0  and e1 are constants. (Such solution are conistent with a constant boundary

frurrent J for llws a 0. The corre inu Rx, my, Us are zero but

It is not poessabe to express this quantity in torse of r Z  itself or R .  i s better

to leave it in the form 9 Its. Solutions of Maxwell's equatilons wi~th Ex having this
as

form he energy expres ib e as a quedra form in . and having

-12-
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Next we consider Hz Hz as described earlier. Such a solution is consistent with a

boundary current for which J., 0, constant with respect to time but possibly varying

with (x,y) e D. We may take H,, Hy, 3, all zero. However,

asE 3H X, 3H,x z Ty axz

so we may not assume that Zx  and Ey are equal to zero. The energy associated with

solutions of this type is expressible in terms of

aHs 2 aHz 2
(5[C-) + (V.)]xdy

if Integration with respect to t is permitted. in the sequel we will not explicitly

consider the timewise linear electric fields satisfying the above equations.

We see then that a norm involving only Ez  and Hz  and compatible with the energy

(2.3) may be expressed as

1(.)2 _ff11 )[ as , - as z n 3H I * 2 *2n("H Z ) I R (p ..-- -A Tg -) + (t,-! -a- Tt-) + c(.) 2 + z( 2

- 2 ai 2 ai )2 i 2
0, (V.) + ajo-x) * oj--) ]dxdy (2.17)

where O0010, are positive numbers. It will be seen that this is a weaker norm than

the one associated with a pair of wave equations, viz.:

1(39)1 3 2 aH

1(rI (Cjj-) 2 -)-1 + IvE 2 + lV. 1 2dxdy . (2.18)
R

a n a
We will denote the Hilbert space of states 3z, Hz# at i-- lying in H1 (R), HI(R),

L2 (R), L2 (R), respectively, by H. This space will be very convenient for use in the

remainder of this paper. In some cases we will add boundary conditions to the

specification of H, the space with norm I 1, without changing the symbol, to correspond

to an agreed specification of the states in H by similar boundary conditions.

-13-
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3. SM COTAL CONFIGURATIONS

We describe here two possible realizations of the control problem which we have posed

and indicate why we have chosen the mathematically more interesting (i.e., more difficult)

one to work with in this paper.

Let us assume that r - au - x x (-a)

is covered by one or more layers of conducting

* bars, arranged in rows as shown in Figure 3.1.

In the case of a single layer of conducting

bars shown in Figure 2(b). the bars are arranged

so that they make an angle 0, 0 < 181 <

with the vector 0 (cf. Figure 1), while in

the double layer case (Figure 2(a)) they are Figure 2(a). Double Layer Control

arranged so that the bars In the second layer

make an angle O, 0 < 1I1 < !, # 0 SO with

the vector 0. The current In any row of bars

parallel to the s-axis is independent of at

i.e., constant for all bars in that row. As

we consider successively smaller bars we

obtain, as an idealization, the boundary

current vector

Figure 2(b). Single Layer Control

3(xy,t) - J(x,y,t)(cos S4 + sin SO) (3.1)

in the single layer case, J(x,yt) denoting the current strength with the sign determined

so that J positive yields a positive current component in the 0 direction. The

corresponding formula in the double layer case is

S(x'y,t) - 3I(x,y,t)(cos e0+ sin S )

+ 1 2 (xy.t)(coq V + sin 4') . (3.2)

The current components are, in the single layer case

3 (xyt) = J(xyt)cos ,

3 (x,y,t) - J(x,y,t)sin ,

-14-



and in the double layer case,

(X.y~t) (Cos e Cos * J1CK.y,t)1
= 13.3)

iJz(X,y,t)l sin 0 sin * ( 2 (xy,t) .

The determinant of the matrix in (3.3) is sin (# - 0) * 0 if # * 0 in the rangeU W
0 101 < 1, 0 < 1#1 < 1. Thus in the double layer case J and J are independent

if J1  and J2 are independent while in the single layer case J and Jz are fixed

non-zero multiples of each other.

"he double layer case is easily disposed of in the light of earlier work on boundary

control of the wave equation. Referring back to (2.10), (2.11) we now have, for

(xy) e B - DR. t e to,-),

at (x,y,t) Ua(x,y,t) - cos 6 ul(x,y,t) + cos * u2 (xy,t)

3Z

J Ez

j- (x,y,t) - Z (x,y,t) - -sin 0 u I(x,y,t) + cos * u2 (x#yt) 0

31 J 2
u (xNy,t) -(xy,) - (x'y,t)

Since U. and Oz  are independent if u1  and u2 are, the control problem splits into

two uncoupled wave-equation problems, one for E. and one for Hz . These have been

* discussed thoroughly in (21, (31, 1151, (161, (221, (231, (251 with affirmative

controllability results for various control configurations and will not concera us further

here.

In the remainder of this paper we study the single layer case. If we let

u(x,y,t) - ! (x,y,t) (3.4)

we now have the wave equations (2.6), (2.7) for s" NZ and the boundary conditions

it- (x,y,t) - cos 0 1- (x,yt) 1 a u(x,y,t) , (3.5)

-15-
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3z 0
37V (xyt) = -sin 6 j (x,y,t) I B u(x,y,t) . (3.6)

The control problems for 8z  and Hz are now coupled because the single control

function, u(xy,t), appears in the boundary conditions for both EZ and Hzi we have to

contol both systems simultaneously using the sam control function.

If we rely on experience in a single space dimension, which has proved generally quite

helpful in the control theory of a single wave equation, we are led to believe that systems

like (2.6), (2.7), (3.5), (3.6) may, in fact, be controllable. Replacing u(x,y,t) by

u(t), u1 (t) and taking 0 C x 4 1, the one dimensional equations are, using variables

V, W, 2 2V
3lv 32v

. 0 (3.7)t
2  x

2

at aI ;v Iv

RE (o't) -u 0uot), i- 1,t) - OUlI(t) ,(3.8)

-w a - 0 (3.9)

St
2  

ax
2

3W (0,t) - (t),  (1,t) - OUl(t) (3.10)

(note that - co rrepnds to the exterior normal derivative at 01. Letting

- Iv (3.11)
Ix

2w- (3.12)

we find that

.... 0 (3.13)
t2 x2

and

42- 2

t2 2 0 (3.14)
at 2 IX2

Differentiating (3.11) with respect to t and using (3.8) we have

-16-



2I

v (O,t) -1 2 (Ot) - u(t) , (3.15)

ax 2 a x p0

132--v(,: 1v .a Ul 3
x'I -'- (1,t) - u (t)

P 3x 2  P X p 1(.6

while differentiation of (3.12) along with (3.10) yields

23 w 3w
(0,t) 3x (Ot) - -Bu;(t) (3.17)

a w aw (.8
at;x (1,t) 'x (1,t) Bu;(t)

Combining 13.13) with (3.14), (3.15), (3.16), (3.17), (3.18), we see that

By + - vB - -wboth satisfy the wave equation and
P p

_ (B; + -;)(Ot) - 0, 2_ (; + -  )(1,t) - 2 u(1)

x ;M

(0; u0 (t), L- (ByV - )(1,t) a
ax - P)ax P

Thus the control problems for 6 + - w and 0 - - w are both of Neumann type and are
P P

uncoupled. Affirmative controllability results are then available from (201, (211, [241.

If we replace u 0 (t) (or ul(t) by 0 in the above, then O _ V (or By + -

vill become completely uncontrollable and our original system must therefore be

uncontrollable. This result at first seems to predict failure for the enterprize which we

now undertake for the two dimensional case.

II -17-
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4. APPROXIMATE -OUNDARY CONTROLLABILITY

By a simple change of scale in the t variable, and renaming of the independent

variables, we may assume that the system of interest is

2 v a2 v a2
-l 2 + (~ 4.1)

at2 ;x2 (xy)eu,

3 2 -2 2 + a 2e (4.2)3t
2  

3x
2  3

y

with boundary conditions

jV (x,y~t) - 1U(x#y,t) (4.3)

(x,y) emB an- (

T,•j (x,y,t) - Su(x.y,t) (4.4)

We will not, in general, assume that u(x,yot) can be selected at will for all values of

(x,yt) shown. More on this later.

Because the system is time reversible, it is sufficient to analyze controllability in

terms of control from the zero initial state

av

v(xy,0) - . (x,y,0) . 0 , (4.5)

w I (x,y) e a

w(x,y,0) - j- (x,y,0) - 0 , (4.6)

to a final state

3v
v(x,y,T) - v0 (x,y). if (x,y,T) - v (x,y) (4.7)

(x,y) e R

w(xy,T) - 0 (x,y), aw (x,y,T) - w (x.y) (4.8)

-18-



We have noted in Section 2 that the I I- finite states are dense in the I I- finite

states. In the present context this means that we can work with the Hilbert space of

3v 3wstates v, R W, w, with the inner product

av av w3 aw vav 3 w w av av aw 3w
f f[ y yt + - I- + -4-- - 'S ddy * (4.9)R

a space which we will refer to as H. The norm is I I (cf. (2.18)) with Me 1. As we

have indicated, this is a dense subspace of H, the Hilbert space obtained by use of the

norm I I (cf. (2.17)),

The final states (4.7), (4.8) are not quite arbitrary in H if the control u is

restricted so that its support is contained in a proper relatively closed subset BI C B.

3Since the condition
T_ (x,y,t) - a u(x,y,t), (x,y) e B

applies, we may as well adjoin the additional condition

v0 (x,y) - 0, (x,y) e B - 81 E (4.10)

The trace theorem ([11, [19]) assures us that this describes a closed subspace of H,

4. which we will call The only restriction on HI is (4.10); v 0  is permitted to have

arbitrary values in H1/2(BI) and w0 , w, are unrestricted in HI(B), H0 (R) = L2(R),

respectively.

Let U be a given space of admissible control functions, about which we will shortly

have more to say. For each control u e U we assume the existence of a unique solution

vu, wu of (4.1)-(4.6) for t ; 0, (x,y) e R. Very general sufficient conditions for this

's, to be the case are given in (191. We define the reachable set at time T, R(U,T), to be.2 ' 3w vu 3wu

the set of all final states vu(x,y,T), a- (x,y,T), wu(x,y,T), a-- (x,y,T) which may be

realized in this way. The set R(U,T) is a subspace of if U is a linear space,

which we will assume, and our system is approximately controllable in time T if R(UT)

is dense in (then R(UT) is also dense in H because I I is a weaker norm than

I I and N1  is dense in H). Evidently R(U,T) is dense in H1  just In case, given an

-19-
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arbitrary state (vorvw 0ow 1 ) in H1,

{C(vu(X,yT), a-- (x,y,T), wcx ,y,T), a (x,Y,T));(Vo., ow0,w)) 0

u e U --> (:0,0#,W0#;11 - 0 . (4.11)

Let v(x,y,t), w(xy,t) be the unique solution of (4.1), (4.2) satisfying the terminal

conditions at time T:

- av -- 3v(x,y,T) .v 0, (x,y,T) - vt, w(x,y,T) - w0, L (x,y,T) - w1 , (4.12)

and the homogeneous boundary conditions

av (x,y,t) - 0 , (4.13)
'at

(x,y) e B, t >0

a; (XYt) - 0 , (4.14)

Computing the quantity

d v 3w
aw u

;(,Y,t), ;(xyot), T (,Y,t))) ,

using familiar duality theorems involving the Laplacian and integrating from 0 to T

(see (22], [231, [26] for details in the case of a single wave equation) we see that

((v(x,y,T), (x,y,T), w (x,y,), au (x,y,T)), V

T a Vu 3; aVu- [ (x, ,t) 3  (x,y,t) + T (x,y,t) a , ,,t)

a t 3V 3V (xto B

3w Wu

+ 1- (x,y,t) -- (x,y,t) + - (x,y,t) - (x,y,t)]dsdt . (4.15)

Then using the boundary conditions (4.3), (4.4), (4.13), (4.14) we see that the above

-20-
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reduces to

TB
f f [z - (x,y,t) + B (x,y,t)]u(x,y,t)dsdt • (4.16)

4. 0 9 3at

If, as discussed above, we suppose that B has the disjoint decomposition

B 0 BI

with BI relatively open in B, and that u(x,y,t) E 0, (x,y) e BO while on B1  u is

unrestricted save for the specification of the admissible space (e.g., we might take

U - C(B1 x (0,T]), U - L2(aI x [0,TJ) , (4.17)

or any of many other possibilities), and if we suppose the first equation in (4.11) to

hold, we conclude that (4.16) vanishes for all u e U. We know from the trace theorem

((], (19)) that the partial derivatives

restricted to B, all lie in H1/2 (B) for t e (0,T] and vary, with respect to the norm

in that space, continuously with respect to t, i.e. they lie in C(H1/2(B)a [0,TI). We

suppose, as is the case for (4.17), e.g., that U includes a total subspace of the dual

space of C(H1 /2(B1 )P[0,T]). Then the fact that (4.17) is zero for all u e U implies

a av, (x,y,t) + B . (x,y,t) - 0, (x,y) e B 1 , t e (0,T] . (4.18)

We also have (cf. (4.13), (4.14))

3_ (x,y,t) - 0, - (x,y,t) = 0, (x,y) e B,, t e (0,T] . (4.19)

The boundary values of ; and ; are therefore overspecified on BI x [0,T]. The proof

4'9 . of approximate controllability, where it can be carried through, depends upon being able to

use this overspecification to show that

v(x,y,t) 0 0, w(x,y,t) - 0, (x,y) e R, t e (0,T]

and therefore to conclude that the implication (4.11) is indeed valid so that R(U,T) is

% -P 1%"dense in HI and hence in H. We carry this argument out for the case in which R is a

rectangle and 8I is one of its sides in Section 5.

-21-
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Following the development in 161, it may be seen that our system is exactly

controllable in H1& us'.ng the control space U -L (23( X (0,T]), just in case

av aw -IQz N + 2 L 2(1lx0,Tl)? KIv 0 "v 1,w0 " w)1' (4.20)

for some K 0 0. In general this is a very difficult result to obtain but we are able to

obtain exact controllabtlity, by other means, for the case where R is a disc in R2

and B- - B is its boundary, a circle. This result is developed in Section 6 where it

will be seen that it is heavily dependent on certain properties of the Bessel functions.

4-

',.
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S. THE CASE R - A RECTANGLE, BI - ONE SIDE.

The work here can be carried out for a rectangle with arbitrary dimensions, but all

essential ideas are contained in the notationally simpler case

R = ((xy)IO I x 4 v, 0 4 y 4 w)

to which attention is restricted henceforth. We will assume that BI, the portion of the

boundary on which control is exercised, is one side of R, without loss of generality it

is the set

8, - {(-,,y)10 -C y -C W} .(5

We consider then , w satisfying (4.1), (4.2) in R x 10,T) for some T > 0, and also

satisfying boundary conditions

3t (x,y,t) - 0, (x,y,t) -0, (x,y) e B - 3R, t e (0,T] , (5.2)

33;

a 3V (I,y,t) + 0 B (,,y,t)

3V at

Aa 3; (Sy,t) + 0 a (%,y,t) - 0, 0 • y 4 W, t e (0,T) . (5.3)

We may assume without loss of generality, since the wave equation is time reversible

with either Dirichlet or Neumann boundary conditions, that ; and w are extended to

satisfy (4.1), (4.2) on -< t < and that the boundary conditions (5.2) hold for

(x,y) e B, t e (-,i). We may not assume that the boundary condition (5.3) is applicable

beyond (0,T), however, if controls are restricted to have support in BI x (0,T]. Let

> > 0 and let s(t) be an arbitrary function in C"(-,") with support in (-6,5).

Define

* 9 v(x,y,t) . 9 s(t - T)v(x,y,T)dT (5.4)

w(x,y,t) - f a(t - T)w(x,y,T)dT . (5.5)

Then v, w are solutions of the wave equations (4.1), (4.2) satisfying boundary conditions

-23-
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t (x,y,t) - 0, j (x,y.t) - 0, (xy) e 3 - 3R, < t <- , (5.6)

while

a Tx (T'y,t) + B y (',y,t) - o, 0 < y 4 v, t e [8, T - 61 . (5.7)

Moreover, it can be shown that v, V are of class C for (N,y) e R, -m < t < -. If we

can show v 0, w=0 for any such choice of a, then =0, w 0.

Let us define, for (x,y) e R, -a < t <m

#(x,y,t) - a a (x,y,t) + 6 a- (x,y,t) ( (5.8)

From (5.7) we have

*(W,y,t) - 0, 0 C y 4 1, t e 18, T - 5) (5.9)

Since C1 and 0 are constants we have

1 1 - !!- + 32,(x,y) e Rt, <t < 15.10)
at2 ax2 ay2

Let us note that, since v satisfies the wave equation in R U B,

a-v (x,y,t) + 0 32 (x,y,t)
at 

2

2 v +av (x,y,t)] + 0 a (x,y,t) (5.11)
ax y

Setting x - w in (5.11) and differentiating the identities in (5.6) with wespect to t.

we see that the left hand side vanishes. Then, comparing (5.11) with (5.8)

-(,yet) -a ;)24 (1,y,t) S m(y), 0 C y C 1, 8 C t 4 T - 5 (5.12)

the last identity being valid as a consequence of the first condition in (5.6).

The two conditions, (5.8) and (5.12), satisfied by # at the boundary x = x enable

us to use hologren's uniqueness theorem (see (51 or (131, e.g.) in much the same way as it

-24-



wis used in the proof of the approximate controllability of the wave equation in (22], [231

to see that if

T > 2 + 26 (5.13)

then # must be independent of t for 1 + 5 4 t 4 T - 1 - 6, i.e.

_(x,y,t) - *(x,y), (x,y) e R, I + 6 4 t 4 T - 1 - 6. (5.14)

iZ Because v and w satisfy the wave equation in R with the homogeneous boundary

conditions (5.6), and are of class C" in t U R, we have C - convergent expansions

I. . kjt  - k t

v(x,y,t) - V0 (X,y) + i "M (V kie + V kje- )sin kx sinjy (5.15)
k- j1 kjt -ikJ t c k o y5.6

k- j-1

where

Wkj k (5.17)

v0 (x,y) is a C function in R U D such that (cf. (4.10)

.v o(x,y) - 0, (x,y) e s - {(w,y)IO C y C v5

and w0  is a constant. Then, from (5.8),
4'..1..

, 3volx,y)

*(x,y,t) -a=

ax

k " I cos kx[ 1 (kvkjsin jy + iki w kcos jy)e 
i

kJ
t

ki I -ikj t

S (Qkvkisin jy - i kj'k.)Cos jy)e kj (5.19

% j-l

,%,% still 
-  

convergent for (x,y) e RU B, - < t < . Noting (5.14), we see that the

left hand side takes the form

0 0

*(x,y,t) - a 4-(xy) - a 3 (x,y)

1 + 6 4 t C T - I - 6 . (5.20)

-25-
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We now strengthen (5.13) to

T > 4 + 26 (5.341)

and we see that the time interval In (5.14), (5.20) has length > 2, i.e.

T - 1 - 6 -(1 + 8) - T - (2 + 26) > 2 • (5.17)

Since the functions coo kx are orthonormal on 0 4 x 4 x, we conclude from (5.19),

(5.20) that for k - 1,2,3,...

j ( kvki $in jy + Bukijwk coo Jy)e W 
j t

+ J (*kv k:sin jy - iB~:;kcos jyle
i)-I

2
- J (x,y)cos kx dx B *k(y), I + 8 4 t 4 T - I - 6 • (5.22)

0

Classical results of Levinson and Schwartz ((17], (27)), which have frequently been

used in control studies of this type (see, e.g., (121, [211), can now be used to show that

for each fixed k, the exponential functions

eimkjt i k 1,2,3... .

together with the constant function 1 are strongly independent in L
2
(1) for any

t-interval I of length > 2. This clearly contradicts (5.22) unless we have

ak(Y) = 0, 0 4 y 4 w (5.23)

and

akvkjsin Jy + LikCjwkjcos Jy - 0, 0 4 y 4 w, j - 1,2,3,...

But then, since for each j sin jy and cos jy are independent on 0 C y C w and since

none of 0. k, 0, w.ki are zero, we conclude that

vkj - 0, wkj - 0, k - 1,2,3,..., j - 1,2,3,... (5.24)

Since (5.22), (5.23) show that

*(x,y) =- * (y)cosl kx = 0
It- I
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(5.19) gives

*(x,y,t) # *(x.y) = a ax , (x,y) e R , (5.25)

1 +5 tI T- -.

Noting (5.15) and (5.16) and the fact that v(O,y,t ) 0, we conclude from (5.23) that

% v(X,y,t) V (X,Y) I + 6 4 t T ? - 1 - 6 ( (5.26)

W(x.y,t) 2 wo '

Since v(x,y,t) i v0 (x,y) is a solution of the wave equation with (cf. (5.18))

v0 (xy) - 0, (x,y) e B - ((w,y)I0 < y < V)

it must in fact be a solution of Laplace's equation there. Then we compute

a2- 2

3vo 2 3v2 3 Sv a v0
R[- (XY) 

+  -  (x,y)) + v0 (x,y)( x - (x,Y) + - (x,y))]dxdy
ax ay

" J div(V0 (xy)grad ;0 (x,y))dxdy
R

vo(x,y)grad v 0 xy-~~~s V~~)Y-(1yd (5.27)
B 0

Combining (5.9) and (5.25) with the fact that v0  satisfies Laplace's equation we conclude

from(5.27) that

[vo2S3 (,y)) + (::2 (x,y)) ]dxdy 0

and this, together with (5.18), implies
v 0(x,y) 3 0 (5.28)

Combining (5.26) and (5.28) we conclude that

v(x,y,t) E 0

w"x~ . } (x,y) e R, - - ( t C - (5.29)
Sw(x,y,t) 2- w0

the result for - < t < w being an immediate consequence of the result for

-27-



I + 6 ( t 4 T - I - 6. Since this is true for every 6 > 0 and every 9(t) in (5.4),

(5.5), we conclude that a comparable result obtains for v, ; in (4.11), (5.2), (5.3). It

follows (since w - constant is a xero state in I and in H) that (cf, (4.9) ff.)

I(voVl,vOvI)Ij . I(vo,VwvOwl)IH " 0

and, from the discussion in Section 4, the approximate controllability result follows.

-28-
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-.~.*6. SOME EXACT CONTROLLABILITY RESULTS IN THE CASE OF A CIRCULAR CYLINDER

We consider nov the case 0 - R x (- ,w) with

2 2R "((xy)Ix + y 1

3 - OR - (x,y)lx
2 + 

y
2

With introduction of the usual polar coordinates r,O, the equations (4.1), (4.2) now

32 v v 1 a2v

at2 Or2 rOr r2 a02

!- ! - + .-- + (6.2)

- at 2  ar2  r Or r
2 

se2

and the boundary conditions (4.3), (4.4) are transformed to

.4v
3w (1,0,t) - uC,t) . (6.4)

Writing

v(r,e,t) - k vk(r,t)eikU, Vk = k  6.5)

ikO-w(r,6,t) - k k(rt)e Wk " w- , (6.6)

u(,t) = u ktMe (6.7)~k--

we arrive at an infinite collection of control problems in the single space dimension, r:

a 2 v a2
atr 2 v Or2 vO 2 k 0

k k +I 2k k2 , - < k ,

at 2 Sr
2  i r r 2 w,,

% %
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-2M - .-V j -X A - - -- 7 " ' -1 .a. -x' - .16 .- ..

DVk

aw k

a"- (1,t) -akt ,  -. -,(.0

< k3r (1,t) - Ouk(t)' -- k <- (6.10)

We wil first treat the equation (4.1) with the boundary condition (4.3) which, as we

have seen, reduces to the set of problems (6.81, (6.10), - K k < -. With

Ik,.) )~rte M 3v k(r~t) ikO 3vz(r,e,t) = z(r,t)ek - vrt I k-a e (rv t
" t e " - (r,6,t)

.-. k- t

we have the equivalent first order systems

- ,k(r 0) - (0 1)(vk (r't) .LI Vk(rt) (6.12)
3 zk(rt) LIk I  0 zk(rt) kiz k(r,t)'

where LIkI is the differential operator on the right hand side of (6.8). The boundary

conditions (6.10) become

Zk(1,t) - auk(t), - < k < - . (6.13)

The eigenvalues of the operator L1-kI with the corresponding homogeneous boundary

condition

zk(lt) = 0 (6.14)

are
0, +iw IkI~to  - 1,2,3,...

where ulkl,& is the 9-th positive zero of the Bessel function Jlkl(r) of order Ikl.

The corresponding vector eigenfunctions are

(#k | (r))' ( 1 1 kil (r) )) <- < ,.k < do
0IkO , ) Ikl

(r
) )"

where

IkIr
Ik  ,  < k < -6. 5
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-kl  = A-k kI(wk.r)l k < - ,Ik~t/r) 1,2,3,.

The normalization coefficients Ajkj , AlkI,. are chosen so that

2 12 1

Sr1 , f rll (0 or " L t- 1,2,3,..... (6.16)
0 kjO2:f' 0 IkIJN 2W

Thus

A =/IkI+ I I
kl,0 k < (6.17)

while, as may be seen from (51, e.g.

A =kII IkIL (6.18)

The state space in which we wish to work, for the present at least, is (cf. (2.18,)

-. Vjv e H1(),z e L 
2.(R)I

with the inner product

((v,), (2) f - lV- + zlz2 )dxdy
1 2 R

and associat~ed norm. Since the #IkbA satisfy the homogeneous boundary condition (6.14)

one easily sees that

ikS 2

o =''k ; ie - f #lkl, ioke A(#l Oe )dxdy

iLkS 34lk1 ,o 2-Lwo k
+ " # Ike ar" ikdO+ Ik i 1 I IkIde
3R s3 0

- 21kI(IkI + 1), - k - , (6.19)

while
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tiWtkAIItk. 32 x- k, 1k t I "tIL 2dxdy%l I ,.t lkl ,t!

+ I Vtjklt.Vlkl.1 dxdy - 2 lkl, t I l1kI t2dxdy -
21 Iklt (6.20)

RR

where

S - (wl )2, " 2 k <-, t - 1,2,3

The state 0.0) has zero norm in H. I evertheless we will not neglect this component.

If v, v both satisfy the wave equation and (6.3), (4.13) on aR with initial state

(4.5) for v we have (cf. (4.16))

((v:::T)) !;:::T))_ a T I U(XY~t 3 (x,y,t) dsdt * (6.21)
Z T)0 3

It may be shown that this result is valid for all u for which the solution (in the

generalized sense) v lies in f and varies continuously with respect to t. This class

of controls u is discussed in (19J and is known to include, e.g., u e c(10,T] 1H/ 2 (B)).

I. we asume Mz given by the R- convergent serias

*v ,.t)) . i kot kS)a(t) (t)(#,k,Oe ) +

>,::t kOlk v,l )  lk

#k  ik ikO

" ikS , Ct ike

and successively let

;(1,.,t) (.ljlleikl ) iW Ikitt-T) [ i,t1 Ik e

e IkZ 'lklJ't ikS 1,2,3g. (6.22)
"Wlkl , t#k ,te
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- for T > 0 we arrive at the equations

21kl(Ikl + 1)vk, (T) - T j f u(O,t) -a (1) e-ikdedt
.%'at',j TT1 k,

00

. 3 tkO

.50 0I ? ilkI ,LVk,(T - = 0 J' u(e't)eilkIl 31)la ({ 1)1 e-ikededt

Q 3 1lk I,, T iwnkI,(T-t)
2w a f e (t)d, (6.24)

T 2w -iW I(T-t) 3#Ikl,l -ike
2 )l (kltk, CT) - f f I u(,t)e 3 r (1) e- dO dt

0 0

3 #kl,t T -iwik I  (T-tl
2 ar - (1) e u(t)dt . (6.25)."%r 0 ,

Thus the Dirichlet boundary control problem for (6.8), (6.10) is reduced to a moment

problem (6.23), (6.24), (6.25) for which uk(t) must be a solution. We proceed in much

the same way with the Neumann boundary control problem for (6.9), (6.11). We let

-ikO - 3wk(r,t) ike 3w*(r,e,t) - k (rt)e k e -( r,O,t)

*4 and obtain, in place of (6.12),

(w lr I (0 Iwk (r t) ( (6.26)
t) Ik 0 (r' Mik

% The boundary conditions are now

(1,t) = Bk(t), -< k <
.. 3r (') Ok"

%.1 The eiqenvalues of MlkI with the corresponding homogeneous boundary condition

-33-
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!k

* are, for k 0,

S.

0, ±iv 0, O I X ,,,.

where V 0 1' is the X-th zero of the differentiated Bessel function, J6(r), of order

0, and, for k * 0,

where v k, is the 1-th zero of J'(r). In th e case k = 0 the eigenvalue 0 has double

kw

multiplicity. The special solutions taking the place of (6.22) in this case are

't t ( - T*O 
(6.27)

where #O,0 is such that (cf. (6.16))

11r*2 dr ie.1
00 2w 0

0 /

In all of the other cases the vector eigenfunctions take the form

*2V I (r)

Itipkt Ikllr)

where

,r) 
< k < -

kl,1 Ik IkI r = 1,2,3....

the normalization coefficients

- IkIJ 
(6.28)

IkI, F - k
2
)1/2j kl(62,)

selected so that

R 2dr =

4. 0

The corresponding special solutions of the homogeneous equation are

-34-
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e) j f IkI Ie

it) ikO
kIJt IkiJii ,

e ik "1

".'.'.'.- If kI , t Ik I L

ikS " (6.29)

"* . As in (6.20) it may be seen that

"p-. '1 2 2o IklI (VlkI 1 2

'F .~ ItiV~v ki IkIL IIL kJ

Let w satisfy the wave equation and (6.4) with w(x,y,O) S 0. C(x,y,O) -

!W (x,y,O) - 0 in R. We expand M in the form

0

"-( .00(t) 0O) + Co(t)(,0)
0 00

+w + WIk ike J+ W W VIkI Ie ike

k-L1 kX iv lkl,4 lk f,  ke  -ivlk l *,  ik O

If satisfies the wave equation and the homogeneous boundary condition (cf. (4.14))

,v- (x,y,t) 0 0, (x,y) e a, t 0 o

we find (cf. (4.16), (6.21)) that

i i-- C(,.',) ' {( *,::T) - j f u(x,y,t) ! (x,y,t) dsdt (6.30)

Employing (6.29), (6.3) successively for we arrive at the equations, for

"< k <

,l -- '.- 35-
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T2w i

2Ul + (T) = J f u(O,t)iv , I 4 jl -t ) (e
IkILkI 0 0 IkI01kl

T iV (T-t)

- 2*oivIkI, *l1kI jt 1 1 f e '"' uk(t)dt , (6.31)
0

41 2w -iv kIJCT-t) -k
2ulkOk, (T) = -0 f f u(e,t)iv te 4' (t ekd~dt0 0Ik'elk'(e-kdt

- -216ivlfl, e a aeIuIlt)dt .(6.32)A0

We find also, taking in the second form given in (6.27), that

T 2w T

(T sf f U(O,t)4'()d~dt =2wB*T f u Ct)dt (6.33)
00 0000 0

d

Since this must be true for all T and 3 w 00 (t) - C0 0 (t), we have also

2

w00IT) - 2Wj 0 J (T - t)u 0 lt)dt (6.34)

N 0

Since IAkjI (V k,) 2 (6.31), (6.32) become

B' S ( uk(t)dt (6.35)

4+&w.T)= Ilkl,L~~ll l(VktC )

0

v T -iV, (T-t)
'''w (T) a Ck"v )J e u (t)dt ( (6.36

* iWOi k,I k~ k, k~ 0k

Taking account of the fact that

* ~I 3 IkIt

3r "lkl,Jtlkl,t I l ,

(6.24) and (6.25) yield

-36-
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*00
-. .T iw (T-t }

v- (T) = A JkI fT e 1k1 u (t)dt (6.38)

we kL IkI t 3r IIL 0 k (.70% CIk) = A kIL 1 T -iwlkL,(T-t)
---- a vkDlT =AkI,t r ( ki, &  5 ' • (ktldt • (6.38)

o

'p On the other hand

ar = kl ,0,1) - 1 0 Ik

so (6.23) gives

v@ + kI (T) A 0 tdt" (6.39)

*~00

* '. UsinS the formula (6.18) and (6.28) for A IkI and B'k',l we have

,(T) " IkI J f'r iv 1 k 1 (Tt) U (t)dt (6.40)

'Bi kt ; .2 .1/2  k
. IkI, - k 0

: -- Vll,- = "Vl, jT e-iVlk,(T-tl

10i ----T) 2 21 e Uk (tdt (6.41)

+ 1 T kIlT-tl

v +V (T) = f T e u (t)dt (6.42)Wa k , I 'W k

Si ll~ T -iil1 I,*(T-t)
Ika. v- (T) = f1 T '-- Uk(tldt (6.43)

ia k , I r k

The equations (6.39) become, in view of (6.17),

T

/flkl(Ikl + Ii v (T) - f2 1k I f (t)dt . (6.44)
va k,0 rw 0 U

This is valid, but meaningless, for k = 0. It is easy to see that in the case k = 0 we

~-37-
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should use

V"(T) = - (tdt (6.45)

The equations (6.33) and (6.34) are left as they appear. We note that all of the

coefficients
SV k I,  

2 
1/2' I -k I k 0, 2,O (6.45)

- k211it. ) rx

are bounded away from zero, uniformly with respect to k.

It is also possible to show, using the work 110], [11 of K. D. Graham, that the

numbers
.4 0, VI ,1' Ukl, 1 , VIkI, 2' 'IkI, 2 1 .... lvk,l' 'Ikl,j....

are separated by a gap at least equal to w/2 again uniformly with respect to k.

Applying the result [141 of A. E. Ingham along with the work of Duffin and Schaeffer [7],

much as in (121, (21, (31, we conclude the existence of functions uk(t) in L
2
(0,T], for

any fixed T > 4, solving the above moment problems, - k < -. Moreover, the result of

Ingham implies as explained in [121. (26), that for each k

-22 T 2 22c Nk 4 ]" lk l(0 12dt C C N k
0

where

2 . 21kI(IkI + 1)1v 0 (T)l 2Hk  ,

1-1 II kL

* + 2 I1 () 2

2 2
k ,1,±2.... For k - 0 we must add IC 0 0 (T)I + 1w 0 0 (T)I . Since

T 2w2 T2

Sf Iu(e,t )12 ddt - I I luk(t 2dt (6.46)
0 0 k'-- 0
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we see that the above moment problems, equivalent to the control problem, can be solved

with (6.46) finite, provided that

° N 2 <

ka- 
k

which is the same as saying that the norm of the final state in ; should be finite. We

4 have, then, the exact controllability result that any i state may be controlled to any

other H state during a time interval of length T > 4 with the control configuration we

have described here. As discussed in connection with the wave equation in FFJ, [GG], one

cannot be sure that the state of the system remains in H for all t e (0,T]. However, in

the present case of the Maxwell equations one can show that these states do lie in

H -HZ d (R).
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7. CONCLUDING REMARKS

The approximate controllability results of Section 5 would appear to be extendable to

domains other than rectangular ones but the precise method of extension remains to be

worked out. We will indicate some aspects of this problem which are clear from our current

work.

First of all, the result of Section 5 is almost trivially extended to the case where

control is exercised only on a subset (Cw,y)j0 4 a 4 y 4 b C w), b > a, of

{(i,y)I0 4 y 9 w). The only change is that the interval I + 6 < t 4 T - I - 6 appearing

in (5.14) and subsequently must be modified to d + 6 • t 4 T - d - 6 where

d - inf I sup (1 _ C~ + (R _)]/1
a-Cyb 0<C(,w

if *(wryt) 3 (, ,yt) i 0 for 6 < t < T - , a < y < b, the Holmgren theorem will

still apply to show that *(x,y,t) 3 0, (x,y) e R, d + . C t C T - d - 8. After that the

remainder of the proof is the same: the same eigenfunctions and frequencies must be dealt

with, the functions sin jy, cog jy are still independent on a < y 4 b if b > a and

the conditions

vo(xy) - 0, (x,y) e B - ((w,y)la C y 4 b)

a-(wy) - 0, a 4 y b,

still show Vo(X,y) M" 0 in R.

The first limitation of the method which we have used in Section 5 lies in its

dependence on the construction of *(xyt) as a linear combination of partial derivatives

of v and w. it is necessary to have a solution of the wave equation to which Holmnren's

theorem may be applied. This part of the proof can still be used for non-rectangular

domains as long as a portion of the boundary on whicl1 control is applied is a straight line

segment. Assuming the segment parallel to the y-axis, one can construct # by the formula

(5.8) again and show that # and R both vanish on the straight line segment in
3x

question, allowing subsequent application of the Holmgren theorem to show O(x,y,t) E 0

-40-

I
,%

"0 , " :q % . % % • °. C , . " " ' -'.'.' . •. . . . . .. ".



~for Ix,Y) e R and t in some interval d + 6 4 t 4 T - d - ,with d depending on the

¢ , ,- °.geometry of R. But then we are faced with a second limitation.

~The second limitation of the method which we have used lies in its reliance on the

specific form of the sigenfunctions and frequencies to pass from #(x,y,t) 2
= 

0 to the

-\ conclusion that both v(x,y,t) and ;(x,ypt) are likewise identically zero. It needs to

! ii!our remarks at the end of Section 3) if the control problem is stated for boundary

. €conditi ons

- vlO,t) - 0, - (1,t) - u(t) (7.1)

*(0,t)

3w Op) 0, OW(lot) O u(t) (7.2)

G Tx_~

the seconstructed as in etod 4 will satisfy the ave use equation and

pc fr h i f o(o,t) f ie ( tot) 00 t (7.3)

cocuso.ta ot--t and(O,t) re, i (ict) r0 t (7.4)

DV w

Iv (,t) + 0, (,t) - a(ut) -t (7.1)

Here if we take to be a non-zero solution of the wave equation satisfying (7.4) and

take

;V(Ot) x a; [wC1,t)d9A~) 72axx '

a. 0 at

we clearly have t(O,t) - 0,

(att) - ft -at0(.

0 -o,

! (C,t)d- (Lw (,t) LW 0 (7.5)

-41
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xXt) - (xt

so that VsatisfiLes the wave equation and, clearly, (7.5) is also satisfied. Thus the

wave equation with (7.1), (7.2) is not approximately controllablel *(x,t) a

a (x- Nt) + 0 B (x,t) 2-0 but this does not imply that ; or ; are identically equal

* to zero. The additional condition which makes this work in (3.7) ff. is the tact that one

can show there that
av 3w

-a X (Olt) + 0 B (0,t) -0.

It seems likely that the question of whether or not # 0 implies that both ; and V

equivalently ; and ;* are both zero must eventually reduce to a boundary value problem

of an as yet unidentified type.

At the present writing there is only one, rather curious, result which we can otfer

which yields approximate controllability for a domain R of rather general shape. We

suppose that the 'control boundary" 8, 8 - 3R includes two nonparallel line segments,

itand it2' with unit exterior normals vIand v 2- Proceeding as before we can show,

applying the Rolmgren theorem together with

4 - 0 on '1, I2

E at

aw 1 1,2 on Il I2  respectively,

.av + aw 0, 1 1,2 on Il 2 respectively,
i2

that both

S~(7.6)

* -42-
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+ ~ ,(7.7)- AV 2.. ;

must vanish identically in R for d + 6 ( t 4 T - d - 6, 6 > 0 arbitrary, d > 0

depending on the geometry of R and 3, the location of 1  and t2 within B, etc.

But then both # and f2 must vanish on XI (say) for these values of t. Subtracting

N.i (7.6) from (7.7) we see that

(' - v-) - 0 on it, x [d + 6, T - d - 6]

SThis shows, since 2 and are not parallel, that a nontangential derivative of v

vanishes on 1, X Ed + 6, T - d - 61. Combining this with = 0 on 1, and applying

the Holmgren theorem to v alone, much as in (51, [13], we are able to conclude v 0,

provided T is appropriately large. Then one easily has the same result for w andII approximate controllability follows.

This result gives approximate controllability for R equal to the interior of any

closed polyhedron in R2 with control on at least two sides.

Further inspection of this argument shows that only £2 needs to be assumed to be a

line segment. That is needed in order to identify #2 as a solution of the wave

equation. We may then take XI to be any smooth portion of B1 which is never parallel

to I and achieve the same result.

Finally, let us indicate that we are very much aware of the limitations, from the

-- point of view of actual implementation, of the control configuration discussed in this

paper. In principle, at least, the boundary conditions (1.7), (1.8), along with the

further "single layer" condition discussed in connection with Figure 3.1, could be achieved

* *. with conducting bars attached to terminals as shown in Figure 3.
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Figure 3. Conducting Bar and Busses

The perfectly conducting busses perpendicular to the boundary of a ensure that the normal

component of 1, Av is zero just outside 0, provided that no net change is allowed to

accumulate at the boundary of U, i.e., in the conducting bar. Thus the potentials at

C and D must be regulated so that the potential difference C - D ensures the correct

controlling current through the surface bar 8 while C + D is set so that there is no

accumulation of charge at the bounding surface.

We have not considered any effects of propagation delays in the controlling circuits -

i.e., we have not assumed that these are distributed parameter systems. This assumption,

and evident limitations on the speed with which prescribed currents can be computed and

established in the controlling circuits together with sensing limitations, place admittedly

severe limitations on what can be done "open loop". It is likely that the eventual

significance of our results will be most evident in connection with closed loop behavior

wherein time varying magnetic fields A near the boundary of n induce currents in the

bars S which, being resistive, will then act as energy dissipators. we hope to discuss

this topic in later work.
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Another control configuration may be obtained by supposing the boundary of al to be a

* perfectly conducting sheet of material to which electromagnets are attached in a dense

* array as shown in Figure 4.

Figur 4.Eetoage4ra

If. J.eoe4h urn hog h idns fteeetoantte esalhv

.4% 0
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Dual Paley-Wiener Spaces and

"Regular" Nonharmonic Fourier Series*

by

.'. David L. Russell**

Abs tract

We present here a class of realizations {Yp} of the dual space 4' for

the Paley-Wiener (Hilbert) space 4 of entire functions. The elements of each

space fp are meromorphic functions with poles at thp zeros, Zk, k c K, of

a certain "cardinal function" p. The relationships between 0 and Tp are
p

explored and applications are made to the study of nonharmonic Fourier series

whose terms are complex exponentials ezk t
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1. Introduction and Statement of Principal Results.

It is well known that certain families of entire functions may be given a

Hilbert space structure. (See, in particular, the extensive work [Al of

de Branges in this connection.) The most familiar of these spaces is the

" so-called "Paley-Wiener space", which we here designate as 4. It consists of

entire functions #(z) - #(&+in) with the following properties: For each

(i) there exists a positive number, M#, such that

I,(x) I Me'I E, z - t+i C C; (L.)

(ii) there exists a positive number, N#, such that for every real

S(E+in) I 2di 4 Ne 2 . (1.2)

An inner product and norm for this space are described in [A] and that norm is

equivalent to the norms which we will introduce at the beginning of Section 2.

One of the purposes of this article is to introduce a space (actually, a

-.a. ~ class of spaces), Y, of analytic functions - (z) having singularities

confined to a vertical strip in the complex plane E , and serving as a

natural representation of 4', the dual space to 4. The main interest centers

on # e Y which are meromorphic with poles confined to such a strip. The rela-

tionship between 4 and Y is somewhat similar to the duality relationship

between paired H2  spaces. If we define the left and right Hardy spaces G2

and Ra to consist of functions g(z), h(z), analytic in Re(z) < a,

Re(z) > a, respectively, bounded in sets Re(z) 4 a-c, Re(z) a-c, respec-

tively, and satisfying uniform L2  bounds

_N

.77-7.
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:ig(t+in) 2d-C Bg i <

then (see, e.g., [B]) g and h have L2  traces on the line Re(z) = E a

and the duality relationship

<gh> g(a+i)h(a+ir)dn
2 2

may be used to define all linear functionals on Ga or RE, each of these

spaces being a natural representation of the dual space of the other. We will

have more to say about this in Section 3.

Just as in the case of the Paley-Wiener space and the other, related, spa-

ces described by de Branges, the spaces T which we introduce as dual spaces to

0 are intimately connected with certain entire functions p(z) which "Just

fail" to lie in 4; p does not belong to * but if ' is one of the zeros of

p, p(z)/(z-z) does belong to #. We call such a function a cardinal function.

The precise definition of a cardinal function operative in this paper is the

following: an entire function of order 1 and type w, p(z), is a (regular)

cardinal function if there exist e, W-, a, all positive, such that, for all

Z

I(~n I -C (1.3)
and

Ip(t+in)~ )C e' EI,~ > %. (1.4)

If p is a cardinal function, the space of meromorphic functions

V M {* *(z) - *(z)/p(z), * C 41

is shown to be a natural representation of the dual space 4'. With Zp being

the set of zeros of p, one sees that the meromorphic functions e £ p have

partial fraction decompositions analogous to
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(with suitable modifications in the case of multiple zeros) which are related,

in much the same manner as described by Schwartz in [C], to exponential bases

z t
Ep {e z k C Zp}

for the space L2 [-w,w]. We are able in this way, to describe certain Riesz

bases and "uniform decompositions" of L2 [-i,w], using properties of p

somewhat different from the assumptions on the growth and spacing of its zeros

appearing in the classical work of Paley and Wiener [D], Levinson [E] and

Schwartz [C], or in more recent treatments, such as Duffin and Schaeffer [F]

and Young [G].

4%
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2. 0 and Y as Spaces of Fourier and Laplace Transforms.

The linear vector space, 4, of entire functions satisfying (1.1) and

(1.2) coincides, as is well known, with the set of Fourier transforms

*(z) j eZtf(t)dt = (Ff)(z) (2.1)
-1!

-IW

corresponding to functions f e L2 [-w,w]. The inverse relationship is

f(t) - l.i.m.I j9+iA eZt (z)dz S (F )(t). (2.2)

the integration taking place over the straight line segment joining the two

integration limits. The Plancherel formula

S2 1 (i.) 2
L [_w, ]  2w L

shows that (2.1) and (2.2) are each positive scalar multiples of an isometry on

L2(--,-), the notation #(i-) indicating the restriction of f to the imagi-

nary axis. From

#(&+in) e (in)t f(t)dt
-@

it is easy to see that for each real

e 21 2(,) di
e 2 (- ) (2.3)

from which it follows that each of the norms I 1P defined by

112 J I <':-) 1 2 + #(-'"'") 2 )d

P

- 14! + (z) I 21 dzI " 1+1 2
rlL2(r)

r p being the contour consisting of Re z - p, oriented upwards, and

Re z - -p, oriented downwards, is equivalent to U*(i*)|L2(_.m ,). Much of our
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work depends upon being able to vary at will the particular value of P being

using for I Ip, secure in the knowledge that the resultant topology remains

invariant.

Let T denote a certain family of functions *(z) analytic in i Re(z)j > a

for some a ; 0 which may depend on *. With rp as already defined, p > a,

we specify T precisely as consisting of such functions * for which the iden-

tity

*(Z) - jP (2.4)
2xi r ~ P RZ_4 >p

is satisfied, and, also for every p > > a

lrI *(z)1 21dz I N , (2.5)

where NA is a positive number depending on A. It is quite straightforward to

see that a sufficient Condition for a function *, satisfying the second con-

dition, (2.5), to also satisfy the first condition, (2.4), is thatl *(z)l

should be bounded in I (Re)j ) p for every p > a and, again for every

p>a,

lim . (z)dz rmr -(z)dz -r + m Crop Pz r+O r,-p --

where Crp, Cr _p  are, respectively, the right anid left hand semicircles of

radius r centered at the points z - a, z - -p, respectively.

Proposition 1.1. Corresponding to each * (and associated a) in I there is

a unique function g e L2p (-m m), p > a, where

L (_--) - {g o t  g(t) 2dt < em}, (2.6)

L I and 4 - g, the "two-sided " Laplace transform of g, in the sense that

.,~

,-N

My , nx," q, ," ' " " " " ' " ,, ' -- - -. . . . . . . . . . . . .
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1o-zt
a* (g)(z) j e g(t)dt, Re(z) > a, (2.7)
0
0-zt0 - e g(t)dt, Re(z) < -a. (2.8)

Moreover, for each g e L20 (-m,,), (z) - (1g)(z) C T.

Proof. This is quite standard, so we will be brief. Symmetry allows us to

consider only the t > 0 part of (2.6) and the first identity (2.7). Given

S, we define g C L2[O,-) by use of the Laplace inversion formula on the
P

line Re(z) - p, p > a, and application of the Plancherel Theorem. On the

other hand, if g e L2 [0,-) and we define *(z) - (Zg)(z) by (2.7) for
P

Re(z) > a, application of the Plancherel Theorem again establishes (2.5), inso-

far as the portion p = (zI Re(z) - P) is concerned, for p > a. For

p > > a, application of (2.7) readily shows that

z) le-tg(t) , Re(z) > P. (2.9)
Re(z)-A L 2 [0 0)

Let rr,p denote the positively oriented D-shaped contour consisting of Cr,p,

as defined earlier, and (zi Re(z) - p, Im(z) -C r). If Re(w) > p, then

for sufficiently large r

*(w) - r (z)dz (2.10)
rp

For z - p + reiO -w/2 < 0 4 w/2,

Re(z)- - R(z) - P + (p-A) r cos 0 + (p-A)

is bounded and tends uniformly to zero as r- each sector

-w/2 + 8 4 8 4 w/2 - 8, 8 > 0. Using (+) together with the fact that

I w -1 - 6 (r) uniformly on Crp as r "-I - tends to - the integral

over Cr,p is seen to vanish as r+- and (2.4) follows from (2.10), the

-- - . .

S..% 1
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convergence of the integral in (2.4) again guaranteed by the Plancherel Theorem.

The proof for Re(v) < -a is almost word for word the same so we will regard

the proposition as proved.

For g e L2 [O,), p > a, the usual Laplace inversion formula shows that
P 1 .p+iA z

g(t) - l.iom. f -iA t()d

Aw Wii p-iA
For t < 0 a standard argument shows that the integral vanishes. For

g e L2(--,O we have, for -p < -a,

.41 -p+iA zt
g(t) - l.i.m. i J e *(z)dz.

A+- 2w -p-iA
and the integral vanishes for t > 0. Thus, letting

r -r n {zI Ilm(z)l 4 A} (2.11)

we may write

g(t) n l.i.m. r A e Zt(z)dz. (2.12)m'"A+9P rp,A

Let p be a cardinal function as defined in Section 1. We define Tp to

be the subspace of Y consisting of functions * such that

#(z) - p(z)*(z) (2.13)
% q.

is an entire function and the identity

_1(z) - di cr -

is valid for all z in the open strip interior to rp, p > a as defined for

p in (1.4).

The results which we present next concern the structure of Tp as it rela-

4"' tee to * and the cardinal function p.

Theorem 2.2. Let # c 0, let p be a cardinal function, and let a be as

specified in (1.4). Define
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(P-1)(z) -(z)/p(z) *(z). (2.15)

Then *c YpCY and for every p > a there is a positive Up such that

* Jr J *()I 2 IdzI 'p , , (2.16)

Proof. Let p > a and let I Re(z)j > p. Looking at Re(z) > p first, we

have

.(z) - 2-i I r z-r
r,p

where rr,p is defined as in the proof of Proposition 1.1. Let +(z) - (f)(z)

as in (2.1). Then with z - C+in

(z)l2 2 dt If

- e L2 [-,,]

1 2wE -2w) 2

(e e if, L2[_I,,]

so that

#(z) e' e+ o j 1(1 +I + )1/2,

with M# depending only on *, not z. Using this with property (1.4) of p

and applying the Jordan lemma we see that

lim IC (Cd;- 0
r- 

rp

so that

*(z) - 2dw

For Re(z) > p > a the corresponding integral over rt, the left hand portion

of rp, oriented downward, vanishes and thus

1 -(r) dr . (2.17)*(z) - 2,--f Jr ;-z
p

- A similar argument shows that (2.17) also applies for Re(z) < -p < -a. Hence

condition (2.4) for * to be a member of T is satisfied. Condition (2.5)
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follows immediately from (1.2) and (1.4). Since p(z),(z) = O(z) is entire,

there remains only the proof of (2.14) to show that * C Tp. Define Rp,A to

be the positively oriented rectangle with corners +p±iA. For z interior to

*Rp,A we clearly have

*(z) , ,(..__). dc . (2.18)
( - 2-i JR ;_z~p,A

From the bound (1.1) we have

~1 eOM < -=z ' - r+iA, -p < r < pI - A-Im(z) ' ~-~~
and a similar bound holds for - r-iA. Hence, letting A+-, (2.18) Becomes

Sd, -d (2.19)
i(z) r ;_z

which corresponds to (2.14). We conclude * e Tp and the proof is complete.

The next theorem is a complementary result to Theorem 2.2. Its proof is

... only slightly more difficult.

Theorem 2.3. Let # c Vp and let

*(z) - p(z)*(z) (P*)(z). (2.20)

Then +e 0 .

Proof. Let a be as specified for * preceding (2.4). For I Re(z) >

A > p > a, (2.4) and (2.5) combine, using the Schwartz inequality, to show

that for some BA > 0

* I'(z) I, BA

, Since this is true for every A > a, using (2.20) with property (1.3) of p we

have

-*.Il



*(z) 1 ' ew t I z E+i,, > I = MaX(a,a), (2.21)

C specified for p as in (1.4). Then using (2.5) with property (1.3) of p

we have

Jr.j *(z) 21 dz I ( Na(M+)2e2 1l, > A >  (2.22)
p

The inequalities (2.21) and (2.22) establish (1.1) and (1.2) for Re(z)

- I El >  > i. There remains the question of the behavior of *(z) inside a

strip I Re(z) 4 0, 9 > A in order to complete the proof.

Let the right and left halves of rp, oriented upwards and downwards
+ -

respectively, be denoted by ro, ro, respectively. Define

i+(z) 1 -)d4, Re(z) < , (2.23)

S-(z) jj Jr-. d;, Re(z) < . (2.24)

Since * L2(r,);, have

-(z) J'e-Ztg(t)dt, J'e2Ptj g(t) 2dt < , (2.25)
0 0

and

I *-(i"i) 1 2dn = 2w4_ g(t) 2d -t < (2.26)

Similarly

#+(z) - jO e-zth(t)dt, jO e 2~Pt I h(t) 2 dt < ", (2.27)

and

j, #+(in) 2 dn - 2w -° Ih(t) 2 dt < . (2.28)

Condition (2.4) for * to be a member of Yp implies that

S(un) - *+(un) + *-(in), -- < n < C. (2.29)
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* From (2.26) and (2.28) we conclude that there is a function f e L2 (-ca)

such that

= .i.m. I A eint(in)dn. (2.30)
A+m -A

N and

I A -int
f(t) = 2 A l.i.m. -A

From the identity (2.29) and (2.23), (2.24) we conclude easily (since e

L2 rp) that I *(z) l is uniformly bounded in the closed strip IRe(z)j = I I .

Let CA be the closed contour, positively oriented, consisting of the imaginary

axis from -IA to iA and the right half of the circle Iz j = A. Define

-+ 1 -zt O(z)

SI(t)D A e - dz.
A 2'i DA z+1

Letting A+-, using the bounds (2.21) and (2.22) for * and the Jordan lemma,

we conclude
""~~ cc] -int 0#(ir)dr

w(t) - t e fn_+l

is identically equal to zero for t > w. But the relationship of the Laplace

transform to convolution shows that.2-

.5."' t t-(t-s)
w(t) = e f(s)ds

0

:' and hence that

0 w'(t) w(t) f(t) a.e., t > w

Thus we conclude that f(t) - 0 a.e., t > ir. A similar argument shows

f(t) 0 a.e., t < -w and we have, ferom (2.30) and the identity theorem,

'.'.'.'.I ] e z t  L
O(z) e f(t)dt, f e L

-W
1 valid for all complex z. Hence 0 c 0 and the theorem is proved. For cJ T

we define, for P > a (cf. (2.3)),

, . . "% . -. -. -.- - ... ,..-.* . - -,-..--,.-. . -. • --- -. .... - . -- : . - , -. . . . . -..- .. .
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2= Jr (z) I2 dz . (2.31)
p

Then it is clear that the map P defined by (2.20) maps Yp onto 0. Its

inverse on 4, p-i, is defined by (2.15). It is clear that both P and P-1

are bounded with respect to 1 5p in I and I*1p in Tp. Since 0 admits

- a Hilbert space structure, it follows that T does as well.ip

One of the most important results of this paper has to do with the rela-

tionship between I Ip on Tp and another norm on the same space, which we

refer to as I I . The definition of I 10 depends on the following result.

Theorem 2.4. Let 0 c 4, * e Y, and let f c L[-ww], g e LA

A > a, be such that U - 3f, 4 =1g (cf. (2.1), (2.7), (2.8)). Then with

2i

P

<0,*> is independent of p for p > A > a and we have

j f(t)g(t)dt. (2.33)

Proof. The formal argument is very simple:

21 , Jr ,(z)*(z)dz = - r Ieztf(t)dt,(z)dz

p p

= 1 f(t) -2wi Ir ezt4 (z)dz dt = f(t)g(t)dt, (2.34)

-ip-

the last identity following from (2.12). To make this argument rigorous one may

define (cf. (2.11))

gA (t ) - 2,ri Jr pAe (z)dz

and one immediately has

f(t)gA(t)dt = dJ, Y 27r ()(~z
p,A

- 4

I II I ll /Bla li~lil l Il : . -.
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Since it is well known that gA converges to g in the L2  norm on

and *(z)*(z) C LI(r.), the desired identity follows immediately. Since the

right hand side of (2.33) is independent of p, the same is true of the right

hand side of (2.32), which is well defined for all p > a, a as defined for

P preceding (2.4). We define a semi-norm on T by

S0 sup II

0*0

where

= r i I d,,I

is equivalent to any of the norms p on 0, p > 0. Since the Plancherel

Theorem gives

I o, 0 " I IL2[_..,w] v* If I L2 [-i,r]

and (2.33) obtains, we see that

1 sf(t)g(t)dt

- supW0 r2_, f L2[-,,PW] If' L2[-1W, ]

.4;

- Igi L2 [-',l . (2.35)
.IL'L

Thus 1,f, - 0 if g(t) - 0 a.e. in [-i,;]. Also, since the Plancherel

* . Theorem gives

1.. 2 . 2w( Je-2Ptj g(t), 2dt + jo e2pt, g(t) 2dt)

it is clear that

12 L11 2 dt e2  P 2 (2.36)

A principal result of the next section will be to show that, restricted to Tp,

I I is a norm and an inequality in the reverse direction of (2.36) may be

obtained. We make a start in this direction with

, %
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Theorem 2.5. If E Yp then

t*I - 0 -- (z) 0.

Then I I is a norm on 'p.

Proof. If D * - 0 then for p > a.

Jr O(z)O(z)dz - 0, v C 0. (2.37)

Since Theorem 1.3 shows that for some * 0 4

(z) - *(z)/p(z), (2.38)

(2.37) becomes

0(z)
Or - (z)dz - 0, 8 e c. (2.39)

Ir p(ZP

Theorem 2.3 also shows that as 6(z) runs through 0, 6(z)/p(z) covers all of

Yp-

Let C be a closed contour in the complex plane not meeting any zero of

p(z). Then with q(z) an arbitrary polynomial in z,

*C(z) =- q(4) dC,2wi "C z-C p(;)

defined for z exterior to C, is a rational function of z which belongs to

T p and consequently has the form 8(z)/p(z) as in (2.39). For another con-

tour C, just outside C and enclosing exactly the same zeros of p(z),

(2.39) is readily seen to imply

0 - Jf (z)*c(z)dz = JI P de dz

C C"- gC (i) 12,--_ dzd-; cJ P(;)

Since this is true for every such C and every polynomial q we conclude that

*(z)/p(z) is entire. But since f(z)/p(z) lies in Yp CY, (2.4) shows that

* for P > a

4''" ,i '" "","""",'""", '":' ' "- Mw i-w'" - -"- "'
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:--L- = 1 *( ) d;.
-p(z) 2xi r Pz-; p( r)4. p

The fact that *(z)/p(z) then shows that #(z)/p(z) - 0 for z outside the

closed strip bounded by rp and thus, by the identity theorem,

*(z) =(z)/p(z) 0,

proving the theorem.

-w !

0'p

.y

;-J."

• °

".4..- . ' . ' . . " . ' o. ' . °o ". . , ' y ' . % " . ' '.. % .". .' •% , o % . %,,° , . % %, . . ,. ' ' " .
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3. The Internal and External Spaces.

As previously, let rp denote the contour consisting of the two lines

Re(X) - p, Re(X) -- p, positively oriented, and let the two halves of r be

denoted rp, r.. The following theorem is well known ([H],[II).

Theorem 3.1. Let b+ - h+(p+io) e L2(rp). Then there are uniquely defined

functions h+(z), h+(z) defined and analytic in Re(z) > p, Re(z) < p, and

lying in the Rardy spaces H2{Re(z) > p}, H2 {Re(z) < p), respectively, with

boundary values in L2(rp), such that

h+(p+iO) - h +(p+ia) + h+(p+io).

Moreover

I2 + 2 - 2(31
~0pp p

While we do not offer a formal proof, it may not hurt to remind the reader

that

h +(z) -. Jr+ ,h+()dC Re(z) > p, (3.2)
+ 2i P-p

h Re(z) < Ps (3.3)h+(z) - ii J.r+ , R~)<p
* + p

the orientation of rp being upward in both cases. Moreover, there is a unique

function g+ satisfying

e 2pt Ig ( , 2 dt <

"4 such that h+(z) (3g)(-z), Re(z) - p, i.e.,

A4 i P

h (pi+a) - l.i.m. A e- e g(t)dt

A -(p+ia)t= l.i.m. I e g+(t)dt.
A- -A
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+-

while h+(z), -h+(z) are the right and left Laplace transforms of g+:
~~~ A (z ~~,-zt

h Z ) - l.i.m. A g(t)dt, Re(z) > pA - 0
+ A-0t 0 -zt

h0(z) = l.i.m. J e g+(t)dt, Re(z) < p
A+m ;-A

In the same way, if h- - h_(-p+ia) C L2(rp) we may decompose h- as

h_(-p+io) - h_(-p+io) + h_ (-p+io)

where h.L, h- lie in the Hardy spaces H2 (Re(z) > p}, H2(Re(z) > -p}, respec-

tively, and

:: +( = Jr h_()

h.(z) - i; - dc, Re(z) > -p, (3.4)

h-(z) - i 1r - dC, Re(z) < -p, (3.5)

h I 1 2 r2(rt) r i 2 + 2 (3.6)
. P P

Now let h c L2(p) and let h+, h- be its restrictions to r, r

respectively. Define

Nz) - h+(z) + h:(z), Re(z) < p (3.7)

and we have, from (3.3) and (3.4),

".'" 1h(;) dr.. (3.8)

--.... ' Jr p-

We will refer to h as the "internal part of h relative to r,". (If h is

defined originally on a set which includes r for various values of p it is

. necessary to refer to the particular rp in question. If rp is understood,

we rill simply refer to h as the "internal" part of h.) We will write (3.8)

as

,,. . .
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a-h

and designate

-2 L2 '2(r )  {m h C L (r )}4 i(L (r ))

as the "internal Hardy space" (relative to r.). We define

h(z) - h+(z) - h+(z) Re(z) > p,

h(z) - h(z) - h+(z), Re(z) < p,

and we have, for I Re(z) > p

h h( 
h(-) = d4, (3.9)

as may be readily verified. We write (3.9) as

h - Th

and refer to h as the external part of h (relative to r.). The space

R2(r P) = ThhP L2 (r )} T(L 2 (r ))
is designated as the "external Hardy space" (relative to rp). It is clear that

h(z) + h(z) h(z), z e r (3.10)
so that+

It is easy to see that T and T are both projections, onto H(rp), P2(r0),

respectively, but that they are not mutually orthogonal. Using the properties

of the Hardy spaces one may see that

1h+1 L2t(r) ' h+.' L:(r+)

,',.

P p

P P

L
i :' " , ' ' ' ,, '~~~~~~~~~~~~. .. .... " h"- '. '- ' .' .. v.........,.................,.... ... ... . , .. .. .
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and from this we have, using (3.1), (3.6)

thE L2(r ) ' 'b~- L2(r ) + 'h+I L2 (Fr)

( 2(Ih+l L2(r-) • Ih-E L2(r.)) • 2 IhE L2(r ) (3.11)

h L hr L2(r) ' ,h+ h L2(r)

I +
Eh-L2(r) Eh+ LL 2+(hr'L)

+ I L2( -) < IE L2(r) Ih

('(h+l L2( r) + Ih+l L2(Fr)) < 2 IhE L2(r ) .(3.12)

On the other hand (3.10) gives

thE L2(r ) • 1 L2(r ) + Ihi L2(r) (3.13)

A final point in our elucidation of the properties of H2 (rp) and H2(rp) is

this: if h c L2(rp) and h, h are its internal and external parts,

then IhIL2(ro) and IhlL2(rr) can each be uniformly bounded in terms of

.Ih L2(r), provided 0 4 o < p 4 T. Such a result is easily obtained using

arguments of much the same type as those used above.

Our next task is to identify the Hilbert spaces 0 and Y with subspaces

of n2(r0), i'(rp), respectively.

Proposition 3.2: Let* C 9, so that r P e L2(rp). Then j " * so that

,Irp r T(L 2(rp)) -
2(rp)

Proof. This follows from (3.8) and the fact that (2.14) is valid for all

-"°**c*.

.. * ** *%o/'. "..- - --;..-..- ~ ~ ~,~ %%~
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Proposition 3.3. Let e T ', so that *I rp c L2 (rp) for p > a (cf. (2.5)).

Then , j e * so that 'T rp " I r. £T(L2 (rp)) - H2 (rp).

Proof. This follows from (3.9) and the fact that (2.4) is valid for all * C T.

* We see then that for each cardinal function p, the map P defined by

(2.20), and its inverse, P-1, are external + internal and

internal + external maps, respectively, defined on L2(r).

The following theorem is the basic result concerning "interpolation" of a
4. function f c 2(rp) by a function f e t on the zero set, Zp, of a cardinal

function p.

Theorem 3.4. Let p be a cardinal function and let p > a (cf. (1.4)). Let

h C H2 (r.); thus h may be extended into Int(FP) via

h(z) h(C) dC. (3.14)(-1w-i J r C-z
P

Then there is a unique + e 0 such that ( - f)/p is holomorphic in Int(r).

Moreover, there is a positive K, independent of h, such that

II Pr K I h I L2( r P) (3.15)

Remarks. The term 'extended" has a technical sense here because hl rp is the

limit in the L2-norm, of hI rp, p < p, as p + p•

The term "interpolation on Zp" is used advisedly since for each zero X

of p, of multiplicity p, #(X), .must agree with h(),

h'X), ".,hl-l(X), respectively.

Proof of Theorem 3.4. The uniqueness is quite straightforward. If +1, *2

were two such functions in 0, we would have

.'..',..".. t. *, "......... -* * 4 C b C ' . ./ ... ''''..,.~'.' . *CC -:.'.. -' -', C s' , - .,,C - _,,C ,: , .
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I1-2 *1-f t2-f

p p p

on the one hand in Yp by Theorem 2.2, and, on the other, holomorphic in

Int(Ip). The formula (2.4), valid for * e Y and z external to rp gives

*l(z)-*2(z) 1 t 1 ()- 2()( 0

. p(z) = 2w-i r (z-r)p(id)•

The properties of t e 9 and p, together with the holomorphicity of (l-*2)/P

in Int(up), show that the integral converges and converges to zero. Thus

Y*z) - 2(z), I Re(z)j > p

and extends, using the identity theorem, to all z.

For the existence, we let ru be a contour similar to rp but with

a< o< p. For IRe(z)ha wedefine

h(C)d (
$(z) - JAT r (z-¢)p(a) " (3.16)

The integral is convergent; p is bounded below on rp and the square integra-

bility of h on r. is a consequence of its membership in i2(ro). Then,

still for I Re(z) j > 0, we define

#(z) - p(z)*(z) - p(z) n Jr (z-¢)p( ) (3.17)
%'. 0

Then we define *(w), I Re(w) < p, in agreement with (2.14), by

"*(w) -I- -(z) dz = T(*). (3.18)

From (3.16), # c i 2 (r.), so * e L2(rp). From the properties of p, *, defi-

ned by (3.17), is in L2(rp) and then e H2(r).

Let w satisfy a <1 Re(w)j < P. Then

VV

,.
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(z)p(z) h()dt dz
r rP Zw 4w2  rP z-w ra (z-O)P(M)

h( C) -pz p(z) I dz dC
Ir 0r (Z

4 -I P (-)p( 0 - - -

1 h()d 1 h(") d (3.19)p(w) -2w Ir a(W-O)p(M 2W1 J r w-C

Since h e H2(rp), we have also h c i2(r). Since w is exterior to ra

i h(C_) dr. -02w- Ir w-C
a

and we therefore have, from (3.19),

'(w) - p(w) 9, Ir h(C)o

It follows that i(w) provides an analytic continuation of *, as defined by

(3.17), into the region I Re(z) < P. Thus * is entire. That * 0 * may be

deduced from #(z) - *(z), * e H2(rp), I Re(z) j < p, together with

*(z) - p(z)*(z), I Re(z) > r. In particular, (2.14) follows from (3.18) as

soon as * - f has been established.

There may be some question about the change of the order of integration in

(3.19). Let rPA be defined as in (2.11) and let Rp,A be defined as pre-

ceding (2.18). Since *(z) as defined by (3.16) is in L2(rP)

) h(C)d d - I p(z) r h() dzS p(z)r (z-Ip() -- = Jr z-- J z- )
4w P a 4w A-in p,A z

1r- h() PA - dz dc (3.20)42 ~ (w-C)p(C)z- z-4 2  A ,. Jr o  OO M r Aw

because

p(z)h(C)
(z-w)(z-)p(0)

is integrable for ¢c e t, z e rPA. Then we note, since r, is interior to

" ,' that with P - P(;)" (1 < A; P " ." "." and "- - -.
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n 1 p(z) p(z) IPR P- - dz p(w) -

•w "z-w z-l;

Since h(C)/(z-C) is integrable on r.

h( _)PA_(_)d___ h(C)

K Jr (w-I. )p(¢) Jr W-C- d .

Since it is easily established that

Jr r -we-concrde [.JR -rA ) Lp(z) pz dz -0,A+06 Rp,A p, A z-I -:-

we conclude that the last expression in (3.20) converges, as A tends to -,

to the corresponding expression in (3.19), which is all we need.

Again for a <1 Re(w) < p we note that

*(w)-h(w) . 1 h(C)d. h(w):: ip(w) =2wi I ° (W-)p(M p(w)
a

But one shows quite readily that

h(w) .1 h(.)d_ + 1h()dr
Jr (w-)p( )

since h(;)/p(C) is holomorphic in the region a <1 Re(C)l < p. It follows

that

*(w)-h(w) - I h()d
p(w) 2wi Ir P(C-wOp(M

Since the right hand side defines a function which is holomorphic for

IRe(w)j < p, the left hand side must be holomorphic there as well.

Finally, there is the bound (3.15). This follows immediately from (3.17)

and (3.18). For h(r)/p(C) lies in L2(rp), and, since

1 h(C)dC(

2i Jr (w-C)p(C) = (z)

is the external part of this function, we see that *1 rp E L2(rp) and may be

".5 bounded in terms of I h L2 ( r0 ) using the fact that p is bounded below on
S_,

0"%' , , . * , ', 
"  

" " " " " 
' '  

" " " " " " ' ' ' ' ' ' " " ' ' "
.S.I

5  . j . • . • '. % . ,' , . . - .. . • . ". " . . . . - . . . . . .
... .5- 'L L L 4_ . . . lm .m'..e,,,,1 .L L =.,. _ .
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ro  for a > a. Then we note that *, defined by (3.18), is the internal part

of pt relative to Op and, using the fact that p is bounded above on rp,

we bound 61iP -1 fl p in terms of I*IL2(rp)p which in turn is bounded in

terms f I hI L2(ro) , and that may be bounded in terms of I hI L2(rp) , which

completes the proof.

Corollary 3.5. Let h £ H2(rp) and let * be constructed as in (3.17). Then

+/p eYp and for every O c .

I (z)h(z)dz 1 O(z)C(z)dz
2-i Jr p(z) 2-ri Ir p(z) (3.22)

P p

Proof. The conclusion *(z)/p(z) e £p follows from Theorem 2.2 since c 0.

For a < a< p wehave

O(z)¢(z)dz 1 )(z) I d4 dz
2-i Jr p(z) W 2 Jr ( r (z-c)p(;)

1 h' h( ' r (z) dz d; ~ J h(C~)B8(C )dC4w - - r PL) Jr Z--. 2w r pW
a pa

G(z)h (z)dz
2-- Jr p(z)

P

The change of order of integration is established in much the same way as in the

preceding theorem. The last identity follows from the analyticity of Oh/p in

the region a <1 Re(z) < p together with by now familiar estimates on the

integrand as I Im(z)l +

Theorem 3.6. For any cardinal function p there is a positive number Kp

such that for all * e p (and p > a, cf. (1.4))

1*1 4. Kp I10 (3.23)

Hence I Ip and I I are equivalent on TV

5..

,I . .... -. .< ....•,,.. ... -.. -.,.-.-. ......,....,.... , -" ., ,. -,-.,'-j-.' .% -.-,-.-. ,. ..-
,, , ?," , " :;" " , ", " . .. " 4, .• . .. , , 5 ' ,4. . ,. .,, .,. e,= 

' ..
... "-
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Proof. Let c T and let p > a. Then

... 1 1r z dz = -r 'r 4(z)h(z)dz

where

h(z) = 2wi7(z) dz

-21*(z), z e r.
Clearly h c L2(rp) and hence can be written

h(z) h(z) + h(z), h E H2(rp), h £ R2(rp).

We claim that

-r (z)h(z)dz - 0.
" - P

For if T > p we can easily show that

" J-a 1r *(z)h(z)dz Jr ,( )h()dC = (cf.(3.9))

p

1r'~'~~ ~i Jr z)~; dz d
- Ir h 2z) Jr Z d dz

1~z d dz = 0

p p

*', because z on rp is external to the region Re(?) > a in which *(r) is

* * . analytic and *(=)1+ 0 uniformly as t j - The last property is any

easy consequence of

ip r) 1 (w)dw

-w-T Jr C-w

valid for Re(O) > p. Thus, using Corollary 3.5 with ,( ) expressed as

d r d ti orem . a)/p( nd), o .,

'" and * related to h as in Theorem 3.4 and Corollary 3.5

* U

a..,U *
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2  1 h = I (z)h(z)dz
p 2wi 27r r2i-i 1r p(z)

p p
1 v(z)*(z)dz - ,,

(cf.(3.22)) 2 i Jr p(z)
p

( I€10 Iilu¢ 1 B 141 I u1 (3.24)

%with B independent of i since I10 and Ipare equivalent. But

IhL2(rp) can be bounded in terms of I*Ip (see (3.11)) and (cf. (3.15))

=IIp can be bounded in terms of IhIL2(r). Hence there is a positive

number Kp, depending only on p, such that

1 p <K * P

Using this in (3.24) we have (3.23) and the proof is complete.

Thus we see that Tp, equipped with any of the norms I Ip, p > a, is

a representation of 0', the dual space of 4, duality relationship being

expressed by <,>, e $, O *e T.

A representation of the dual space 0' independent of p may be obtained

in the following way. Let * e T. Let p be a cardinal function and let p > a

(cf. (1.4)). Let

*(z) - h(z)/p(z)

tand we see, since p is bounded below on rp, that h c L2(rp). Write

h - h + h, h e i 2 (rp), h c i 2 (rp), and we see that for every e c

1 r (z) h(z)dz 1 O(z)h(z)dz
<,4> =2i Jr p(z) h2i Jr p(z)SP p

O(z) O(z)-2w- Ir P ( z)

with * constructed from h as in (3.17). We know that VPE T p T. Define

equivalence classes in T by

,I

., .
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n C , <0, > for all c 0 *).
Then

1(41I11} = 141 41 e {1}

defines a norm on Y. Given a cardinal function p, each equl

class {*} contains exactly one representative */p from Tp and
I....{ }1 I*/p'I ,

so the map

O +¢p C {4)

is an isometry between T and Tp relative to {(11I and I*/pi.

Defining

with the norm I I is a representation of $'.

There are other subspaces of T, besides the space Tp which we I
Sp

described, for which the result of Theorem 3.6 remains valid. Let a )

let

z C {z Re(z) a)

consist of a sequence of numbers:

Z I {zkl < k < -)

with the property that

i~f (tm(zk) - Im(zk.1)) d > 1.

Let Tz be the closed span in T of the function

*k(z) - Z-Zk -

We have, of course, for I Re(z)I > a,

0 Zkt
(Z)(ek)(Z), ek(t) = e
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Results due to Ingham [J] and Duffin and Schaeffer [F] show that for each

sequence {ck} 12  the series

Zkt
g(t) c cke (3.25)

converges in L2[-,w], and there are positive numbers C, c, depending only

on a,d, such that

c I L2 [_,,T] k=-- Ck' 2 < C21 g L2 [-ii] "  (3.26)

We know that 1iI0 is equivalent to gI L2[_,]. Therefore for some other

numbers C, c, also positive, with

ckiI(z) -= - , (3.27)

k

this series is convergent in T with respect to I I and

"-2 1*12 4 I 2 < 1*12, • (3.28)
k -m

For each integer £, (3.25), (3.26) show that for t c [-£,w]

2£wz Zkt

st(t) - g(t+2ti) =_(cke k e k (3.29)

converges in L2 [-r,r] and

-g L2  2 2  zk 2 2  lg1L 2 [_1C gI [-...1 4 c .g I

so that

-41wa -2 2 2 4tra 2 2
e c Igi L2 [-.,.] <L i ckl e "C L2 [-1,.]"

From this we conclude that (3.29) defines a function g(t) on - such

that for any p > a, g C Lp(- , ), i.e.,

e-ptg(t) C L2 [O,_),

e g(t) C L2 (--,O,

Then, clearly, the series also converges to * in ' with respect to I1P

and there are positive numbers C, c, depending on p, such that
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-- 2 2 4 2 1-2 2c , kCl. I IkI (3.30)

Then from comparison of (3.28) and (3.30) we have

Proposition 3.7. The subspace 'z C T consists precisely of series (3.27)

with ck C £2 the norms I 14 and I 1p are equivalent on 'z is closed

with respect to the topologies derived from I Ip. Moreover, the map

T : {ck } £2 +* Y

defined by (3.27) is bounded and boundedly invertible (on Tz) with respect to

I1ckl 2 and either Ii1I or I*Ip, the bound depending only on d and

a.

This result will play an important role in the next section.

N%,

'p

N1

4,..

. . . . .. ... .+ . . ,= % . .' _. V 2 '.
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4. "Regular" Nonharmonic Fourier Series in L2 [-N,r]

We have defined in (2.7) the Laplace transform of a locally square

2
integrable function g in Lp(--,-)(cf.(2.6)),

*(z) ( g)(z).

Then with *(z) - (3f)(z), f e L2[-rn], we have seen that

- j f(t)g(t)dt. (4.1)

As a consequence 1*14 is equivalent to IgiL2[-,,,]- When 4 is restricted

4.to lie in ., we know that 1*14 is equivalent to 1*Ip, which in turn is

equivalent to

LJ e 2ptt g(t) 2 dt + 0 -2pt1 g(t) 2 d

e d t +I -

We see then that, for g F X-1 'p, Igilp is equivalent to IglL2[.ww].

Proposition 4.1. If p s a cardinal function, Z is dense in L2 [--w,1T].

Proof. Since (2.33) is valid for each f e L2[-1,,w] we need only show that

- , for all * c Tp (4.2)

implies 0i= O. But for C £'p

-(z) - o(z)/p(z), e o
-9

and then for p > a

S<, =(z)r(z) dz - <6,- >. (4.3)

-2ii Jr Pp(z) p

If (4.2) is true, Theorems 2.2, 2.3 show (4.3) equals zero for all e c 0 and

then Theorem 2.5 shows that f(z)/p(z) 0 which implies (z) 0 and we

*have our result.

. . . . .. . . . . . . . . . . . . . . ..". . . . ."." " 
.'* 

.- -' I "- o ... . " .. .'.... .. ... .
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We will see now that this proposition is really a statment about the

completeness of certain complex exponentials in the space L2[-rw].

Let the points in Zp, the zero set of the cardinal function p, (Zp may

be shown to be non-empty quite easily using familiar theorems (cf. [KJ) about

entire functions) be indexed as zk, k C K, where K is a countable index

*set, and let Uk be the multiplicity of zk as a zero of p. We denote by Ep

the set of generalized exponentials

zkt zkt e- Zkt

{e , *e te z,.-,t e zk Zp} (4.4)

and by [Ep] be span of these functions in L2[-w,r]. It will be recognized

immediately that

[Ep] = £-l(Rp)

where Rp is the subspace of Vp consisting of rational functions

O(z)
p(z) (z)

where O(z), r(z) are polynomials in z with deg a < deg r and p(z)p(z) e 0

is entire. The completeness of E in L2 [-r,nl, i.e., the fact that

[Ep] - L2 [-r,w

is equivalent to the denseness of Rp in T p by virtue of the remarks which we

have made above. Now Lp is complete in Yp just in case, for c f

< -,p> - 0, p c Rp, P = 0. (4.6)

That is the case in just the argument already given in Theorem 2.5 with the

rational functions *C in place of p: if (4.6) were true then */p would

be entire and hence zero, so that 0 0. Thus we have

Theorem 4.2. If p is a cardinal function then Rp is dense in Yp; equiva-

lently, (4.5) is true, i.e., E is complete in L2[-n,j.

r v
• 1lm

i..
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This is, of course, not a new result (see, e.g. [E], [F], [K]) and is included

here simply to make our presentation self-contained.

The functions (4.4) comprising Ep have the property of strong linear

independence in L2 [-w,w] just in case no such function lies in the closed span

of the other elements of Ep; in the context of 4 and Tp this is equivalent

to the constructibility of the Lagrange functions gkv C 0, k e K,

0 4 v < uk, with the property

(j0 1g) £ k
q0 ) (z 0, t k, j v

k, t
I, 1 =k, j v.

Since it is easy to see that these can be constructed in the form (the cv,n

are complex scalars)

i P-V c

q k,z p(z) vn n
n-I (z-z k )

we will regard this strong linear independence as established.

We see, therefore, that Ep forms a basis for L2 [-w,w] in the sense of

constituting a complete, strongly independent set. A decidedly more ambitious

enterprise is to give conditions sufficient in order that Ep should be a

Schauder basis for L2[-w,w], i.e., denoting the elements (4.4) of Ep by

ek,V, k e K, 0 4 v < U, that each g C L2[-w,w] should have a unique con-

vergent expansion

g - kEK 0 gk e (4.)

the gk, being complex scalars. The uniqueness is already in hand, actually,

because it is easy to see that if it were violated for some g e L2 [-ir,wl the

I.Ri. .. '.-' ' ' ' '. . "- . ". -. -. -. -"--. -. ". - '.-.- '- - -. . . . . "
Lo t " " '"-. . .. . , - . . . . . .. . .,
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ekv could not be strongly independent. Thus it is the existence of a con-

vergent series as shown in (4.7) which is the main question. It appears to us

that the most usable sufficient condition, stated in the context of our develop-

ment, is the following. We recall ([NJ) that p is almost periodic in a strip

Re(z) 4 B Just in case for each e > 0 there is a positive number I

"(e,O) such that in each interval [t,C+L] of the real axis of length L ) I

there is at least one number n such that

P(z+in)-p(z)I <C (4.8)

uniformly for all z such that I Re(z) ' 8.

Theorem 4.3. If the cardinal function p, with related a as in (1.4), is

almost periodic in some strip I Re(z)l < 1 with 1 > a, then EP is a

Schauder basis for L2 [-r,w].

Proof. Let a < P < B and let CO  be a simple path joining rp to r which

does not meet Z-. Then for some co > 0

Ip(z) I CO, Co "

Let 0 < c < e0/2 and let 1(e,O) be selected as indicated above. Let

L > t + S, where 6 is a fixed non-negative number, and for each non-zero

integer k - ±1, ±2, -- let nk C ((k-l)L + 6, kL] be such that (4.8) holds

with q replaced by nk- Then let

C = {z + l z C0 }, k = ±1, 2,*.--, (4.9)
k + i 0

and it is clear that for all such k

For each positive k let rp,k consist of the portion of r between Ck_ 1

and Ck and for each integer pair k,t, k > 14 let to,k,X be the portion of

r between Ck and Ct; thus ,k Defne also

P" 'k

.5."
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Rp,k r p,k + Ck - Ckl, k = 1,2,3,---,

Rpkt = rp,k,X + Ck - C , k,1 - ±1,±2,..., k > I.

For z outside Rpk,t, which includes I Re(z)l > p, define

1 x( o d .
p,k, X

Extended by analytic continuation to C - (Zp r Int Rok,) , lk,£ R .

Similarly define *k,£ e Y, but not necessarily to Tp, by

vk,LZ )  2iri Rk,L d-

Let p < a < $. It is an easy consequence of the properties of the H2  spaces

in a half plane (see e.g., [B]) or the Carleson measure theorem ([L], [M])

that

lim i - 0kI 0 (4.11)

Since *(z) O *(z)/p(z), f c 0, the Riemann-Lebesgue lemma shows that

lim ( u ol )- sup ck =0

Since

(ck+cZ)d(C)
I *k,.tz kX(z) 2irfd(z, r klSp,k,L

where X(C) is the length of C and (I distance)

d(z,rpk) rin -zN'> prk~k

it is clear that

lim '*k,X *k,XLa 0
k-*

and therefore, from (4.11)

_ o.

-'- _.',.4- - -,.- , .4-.-- ,-.-: ',. .,.,. , ,, ., J -,..:,., W Ax .. I %?, 2 • .
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lir - k,L1C, =0
• k-v00

If we let

A=gi *k,L= Xgt

then k k e Rp j g, e Ep. Since [*-*k,10 is equivalent to

1g-gk,XIL2[_f, ] and since

k .-
. gk,X I g =£Pl

'.'.".=1 €( )dC e R

"'j w Jrp JA

we have

-..,g= j E

convergent in L2 [-w,wl, and the proof is complete.

*4.t We will have more to say about the significance of the assumption about

the almost periodicity of p in the concluding remarks of Section 5.

Series in the functions ek,v described by (4.7) have been referred to in

the literature as nonharmonic Fourier series. Much of the interest in such

series centers on the question of whether or not they form a Riesz basis for

L2[-r,wl. A sequence of elements, {xk}, in a Hilbert space X forms a Riesz

basis for X if it is a Schauder basis for X and, with

!x ck. (4.12)
... = ck 'k

rem the unique series representation of x in terms of this basis, there are posi-

tive numbers b,B, independent of x, such that
°-2-

b I cj 4 B. (4.13)
kcKO?4 It is evident that {xik } is a Riesz basis if and only if the map from

.. {ckl £ to x c X defined by (4.12) is bounded and boundedly invertible.

[NO".
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A generalization of the Riesz basis notion is that of a uniform decom-

position of X. Suppose Xk, k E K, is a sequence of subspaces of X. If

every x E X can be written uniquely as an X-convergent series

x k Ek, k E Xk, (4.14)
k LK

and, with b,B positive and independent of x

b_1 x 1 2 4 1 1K ki 2 B 2 1xt1 2

then we will say that the Xk form a uniform decomposition of X. A special

case occurs when {xk ) is a Riesz basis for X and Xk  1xk] so that for

each k

& ckxk

for some complex scalars ck, k e K.

It is well known that if {xk } C X is a strongly independent Schauder

basis for X, and if 3 is a representation of ' relative to the bilinear

form <X,E>, then there are unique &k E such that

1, k I

<k, > 0, k I k,1 e K.

When {x k ) is a Riesz basis for X, {&k} is a Riesz basis for 2. The com-

parable notions for a uniform decomposition are as follows. For each k we

have

X Xk ( k

where Xk is the closed span of the XX, I * k. Thus there is a unique decom-

position

X -Xk + k EXk, ik A XkXk.

Let

i
-S
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, PkX Xk

Then Pk is a bounded projection with range Xk and I-Pk is a bounded pro-

jection with range Xk. We .efine -7k to be the range of the dual projection

Pk on and we define -k to be the range of I-Pk in R. Clearly for

x e Xk, e Sk we have

=x& <PkX,(IP~ 2 2Xt O,>=
k(1T& (Pk-Pkx,>= 0

and we have a similar relation for x c Xk, C £-

If for every x e X we are assured of the existence of a unique, con-

vergent representation (4.14), whether (4.15) holds or not, we will say that the

Xk  form a Schauder decomposition of X.

Let us now place Theorem 4.3 in the context which we have just developed.

For each integer k we define a linear operator, Pk, on Tp, by

(Pk4 )(z) = 2w1 *(-,l ' z c Ext(R
-...-.. p,k

Setting

.k(z) = (Pk4,)(z), k - 0,+i, 2,--
•

Y P , k = 0,±l,±2,.. •  (4.17)
p,k k p

Tp,k consists of rational functions P(z) = o(z)/T(z), where a(z) and r(z)

are polynomials with deg a < deg T. Moreover, p(z)(o(z)/T(z)) is entire.

-" The dual operators defined on I will be called Pk" Their definition is

k(z) = (P0)(z) = p(z) k_)p ) ,

p"k (4.18)

z c Ext(Rk). k= 0,±,±2,..-

and we define

..'n.. .



......... . K . .-

-' -39-

S = P', k = 0,i-2.. "  (4.19)

-D p,k k

The proof that *k, as defined here, has an entire analytic continuation lying

in 0, so that 0p,k is a subspace of 0, follows much the same lines as

Theorem 2.3

It is easy to see that the operators Pk, Pk do not depend on the par-

ticular choice of p > a.

Proposition 4.4. The operators Pk, Pk are projections on p, 0, respec-

tively, and for

pk T C , b it * k,

we have <,*> 0. Moreover, Pk is the dual operator to Pk in the sense
'-i

'. that for * e 0, e T ',

<P .,0 = <O,Pk>.

The proofs are easy and essentially the same as those given in connection

with the operator calculus in [N] and are omitted.

Theorem 4.5. Under the hypotheses of Theorem 4.3, taking 6, described prece-

ding (4.9), so that 6 > 1, the spaces Tp,k described by (4.16), (4.17)

form a uniform decomposition of the Hilbert space T P.

Proof. We need a standard parametrization of the paths Rpk. Let the points
+

:'' where Ck meets r and r , respectively, be r We construct a
Sp~~ rp,k, rp,k. ecnsrc

map

[" . 'k 'k( O)

.:" from R, 0  onto Rp,k as follows:

P .~

:k .

_'- * '5
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~ EC 0

•z (i) =
Zk -

+
.-The vertical sides of Rp,k are rp,k, rp,k. We define

r/ ' + + rppl 'prk - k-I )

- .) =

r pk-1 + ( -r -)( r pk-1 E r
pi- - r - rp

pO p ,-L

The construction of the paths Ck is such that the lengths of r rp,k,

i.e., r - rpk,-..1 and j rk - rp j always lie in the interval

[,2L-61. It thus follows that jk( ; ) is bounded and bounded away from zero,

uniformly with respect to k and C E Co . Write

d 4 1 ( ) 1 4 D. (4.20)

Let 4 be an element of p. Then

" k(Z) = (Pk 4 )(z) = JR ) (4.21)

z E: Ext(R )
p,k

Setting

w = 5k(i;), dw = ' (;) d
W k k .

we can re-express (4.20) as (suppressing the argument r)

" "z(k)Ck dC
-'.'-"= , - z Ext(R (4.22).---" 2 I R z C pk (R

For a > w will estimate

2(z 2 dz.
•,".- k= - ' o = k=-k

Let us note that for fixed C c RpO, k(O), Ck-l(I) have the same real part

and

I ,. b
3

',.' . . * * * . *
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Then we estimate

2i I r al IR 2j dz d 2 dz

k-" 41i2 k=- , 0  Z- k
,4w -K

0l: p.) p

D2 Rp ,0 )  ii

2 2

D~ k=- 2 k
• 2;

4wk=!,- I P, O Z- ak

2 ()2

D I('P () 0 Wk) 2

2i "in 2 """2 r LJ~(4.24)

su where

"',", *(z)= *(z)/p(z), 4 :

Clearly ourtask is to estimate the in (4.24) Let

our sum 2

P~~~z) ~ #(2 )0 u(.4

pk-k

k=-- Ck-w

From (4.23) and the inequalities (3.28) there are positivu numbers c,C such

- that

i- F2 al2

Then it is easy to see that

.,;. k=k 2 r = (w) *(w)dw

2 a* G 2 31 k k/2

.NA,
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and we conclude that

2 -2k . €€)1 2 <  c 2 (4.25)

42

the constant c depending only on 6 > 1, and not on the particular sequence

kk. Then from (4.24), (4.25) we have,

k , k rl *nk(z) 12 1 dzI

D 21(R Po)2Z2 spdr sp P( I 2

4 C - )C ,.n ICdP(2-)l zro2

8w4  -. (o-a) 2r 2  zeRp,k

= C ,2 . (4.26)

To obtain an inequality in the other direction we note that

,,, 2_ #*(-) 1 21 dzl'r Ik..#kCz) 1 21 dz-

J r kow -2W4JR9 ,0  
2-Cd

2 I J r JR JRI dz
4w2 a* k--- t--- pO P,0 (Z -)z-- rzT)

1 ~ a 1  * dz d

;,2 <P, ,(Rp.0 kLk 1 (Z- (Z-C)

I- Il , **L, I ) dz dc dC
4w2- J RP.O Jr a z-Ck) I- d

,2 2,o,. (-%.7zT

D2 A(R (p0)2  sp )12

4w2 eR 'O km-r Z-r~'k a

Since

I P(p(OCk()
"k(*. ) " p(k) 2 Jr a%-r*k  d

...... ....



TO M. C. q -T- -'-3---7-9 -- 7

-43-

we have

up I p(z)

_____ )1/2 zero z
k-- C"* V' o I p(z) I k ar V (_Cg)2 2 "eRp,O

*and then

2sup I(z) I 
2

_2 C , 1 o,)+ Cr 2. ,<) _ '"'
l'k~A'_0')2+r2 inf I P(z)T k1.. 0~''

Ep,k

But we know from (3.28) that

km -rn a kum
with c depending only on 6 > 1, and hence

2 1C D ,o)2 c  sp "- *k(ck) 2)a 4"2 CR9,0  km'--n Z-k '

22 2 -21

n2x( 2 -.2(,. " P(z)[
D __ _ ,_.0 dr a 2

4 2- 22i) I P(z) k k- o
8 (a- ) +r ze p,k

rn 2 w ,k (4.28)i kL. I .1J a
which completes the proof.

We now address ourselves to the question as to when the individual func-

tions (4.4) form a Riees basis for L2 [-w,w]. The next theorem treats the case

wherein the cardinal function p Is almost periodic and the zeros, zk, of p

are staple.
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Theorem 4.6. Let the cardinal function p satisfy the hypotheses of Theorem

4.3 and let the zeros, zk, k6K, of p be simple. Suppose there are positive

numbers r,R such that
r (1 p'(zk) I -C R, k e K. 

(4.29)

Then the functions4I

- (4.30)

form a RIesz basis for Tp.

Remark. The right hand inequality in (4.29) follows, of course, from the boun-

dedness of p in strips I le(z) 4- p .

Proof of Theorem 4.6. From Theorem 4.3 the functions ezkt form a Schauder

basis for L2 [-,wJ; equivalently, the functions (4.30) form a Schauder basis

for Yp.

Now consider sequences of coefficients (akj k E K) e SK, and define the

operator T t K p p by

T((ak)) - 1 .() (4.31)
tkCK z-zk k u )k

The domain of T consists of all (ak} for which the right hand side is con-

vergent in Y. Thus T is densely defined (look at finite sequences), one to

one (by strong independence), and has dense range (by completeness). The

adjoint map is

T : * + * * (#(zk) k e K). (4.32)

Since

" 
" , ,

.. , .
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) plz)*k(z ) -p' (Zk) (z-zk )

is the unique element of * biorthogonal to *k, i.e.

1-, k t

and k(zt) - 6kL, it is easy to see that T* is defined on suns bkIk(z)

and hence has dense range. That it is one to one follows from the proof of

Theorem 2.5.

Now, in fact, T and T* are both bounded. The boundedness of T*

follows from the fact that, for + e 0, e-wz#(z) lies in the Hardy space

R2(Re(z) > p) and the fact that the zeros zk of an entire function + e 4

have a maximum density; given L > 0, there is an M > 0 such that the number

of zeros k in any rectangle Im(z-a) I C 1, IeC) 1 4 p does not exceed ?U

when I )L. The Borel measure on le(z) > -p defined by

M (zk) - I. zk e Zp

u((Re(z) > -p) - Zp) - 0,

is then a Carleson measure ([L], [M]) and there is a B > 0 such that for

,g.

k I *(zk) I2 P1,12

i.e., T* has range entirely included in If and is a bounded linear trans-

formation. But then T - (T*)* is a bounded linear transformation.

To show the ties - basis property it is only necessary to establish that

2
T-1 is bounded. We have seen from the boundedness of T that if (ak) e IK

then
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k c K k

and we have

j*~ fT~kEK akl
Now let {bk) e IK. Then

(T p(bb (z)

the domain Of (T*)-  being those (bk) e2 U for which the series on the right

converges. But (cf. (2.20) for definition of P)

bit

kKbk P'(z.k)(z-zk) kIK p' zk) Zk
b (-k , )b I k 1

Since the numbers p'(zk) are bounded away from zero, the map

C: (k) I k  I
C~bk) - p' (zk)

is bounded on h. Thus

(T ) bk} PTC(b,

i.e., k) -1PI'zk)k

(T*)- .TC

Since P,T and C are all bounded, we conclude that (T*)- , and hence

T7- 1 , is bounded. Hence ((z-zk)- ) is the image of the standard orthonormal

basis for 12 under the bounded and boundedly invertible linear transfor-

sation T and we conclude that ((S-zk)-') is a Iesz basis for Yp.
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Corollary 4.7. Under the hypotheses of Theorem 4.6 the exponentials

(ezktj k C K) form a Ries: basis for L2[-w,w].

This Is an lmmediate consequence of the fact that for g e LP(-.",-) such

that (g) * C Yp, the norms ISIL21 and I*lp, or I1, are

equivalent, together with (z-zk) - (ezkt).

>7'I' '
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5. Concluding Remarks.

If we agree to refer to the Schauder bases of exponentials (ezktj for

L21-w,xj associated with the zeros of a regular cardinal function p, as

defined in Section 1, as generating regular nonharmonic Fourier series, we

obtain a class of such series which overlaps, but is neither included in, nor

includes, the class of such series studied in the familiar literature on the

subject. In the classical literature, which includes, e.g. [C], [D], [E],

[F), [F), [J), (0], and numerous other contributions, the emphasis lies on

properties of the sequence (zk); properties such as density, asymptotic gap,

proximity to the imaginary integers ik, etc., are the starting point. What

we call the cardinal function, p, is constructed as an infinite product

p(z) -17 f1 - i.!. ),
kCK k

ordinarily with grouping of terms to ensure convergence. The properties of p

are then deduced from the properties of the sequence (zk).

The most frequently studied sequences fzk) (see, e.g. [E], [0)) are

those imaginary sequences for which (letting K - the integers now)

sup I zki y < 1(

Not all of these nonharmonic Fourier series are encompassed In our framework.

The property of prime importance for p, referring to our framework now, is

that p itself should not lie in L2(rp) but, for each zero zk of p,

-# z p' (zk Izzk
?-

should lie in that space. This requirement, by itself, does not make p

bounded and bounded below on p as in our work here. Roughly speaking, it

_.NFII -
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admits functions p(z) whose growth on r is like I z It with -1/2 < p < 1/2.

Such growth is obtained for sequences (5.1), e.g., if

zk- ikl-21Uk ), IkI+ -.
Consequently, such cases are not covered by our theory as presented in this

paper; we hope to be able to modify our methods to cover them.

To give an idea of what our theory does encompass, we first need a

reasonably large class of cardinal functions which meet our conditions. Such a

class may be constructed as follows. Consider the distribution, d, with sup-

port in [-w,1], defined by

d- 8 (W) + c0 a(-I) +J1 ck a "k +f, (5.2)

where 6(g) is the Dirac distribution with support C, co * 0,

'k Il <-•
the points tk are distinct points in (-wi), and f c L'[-w,w]. Using

results from [N] it may be shown that the Fourier transform of this distribu-

tion

p(z) - <d,eZ >, (5.3)

is almost periodic in any strip I Re(z) -C p, p > 0, in the complex plane. It

is also easy to see that the conditions (1.3), (1.4) are met for some a > 0.

Thus p(z) as defined by (5.3) is a (regular) cardinal function as defined in

this paper.

A very interesting case, not covered in the classical treatments [C), [D],

and [Zj, but presented as an unproved theorem in [F], occurs when the series

in (5.2) is finite, say of length *-I, and
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-w 2v , k - 1,2,-..,N-1. (5.4)

In this case

eZ + oe c e +1' ezt f(t)dt

P0 (z) + 1w 
ezt f(t)dt. (5.5)

The zeros of po(z) then take the form zjt - log(cj) + 2UI, j - -.. ,9

-m< I < f, where the Cj are the zeros of the polynomial

CN + cN-1 0 + -. + + co

and the principal value of the logarithm is intended. The zeros, zjj, of

p(z) are easily shown to be asymptotic to the zjz as I zJd Theorem 4.6

applies here if the zj 1  are all simple zeros.

An Important case also atises for p(z) having the form (5.5) but with the

Ck not rationally related to w, so that, in particular, (5.4) does not

obtain. In this case we cannot give a simple asymptotic expression for the

zeros of p(z) and they may cluster in various complicated ways as Iz I + ".

Nevertheless, p(s) remains almost periodic in strips I Pe(z)j C p, p > 0,

and Theorem 4.5 applies to show that L2 [-w,w] admits a uniform decomposition

in terms of finite dimensional subspaces spanned by generalized exponentials

associated with the zeros of p. This result has a number of uses in connection

with the theory of linear symmetric hyperbolic systems of partial differential

equations having wave speeds which are not rationally related (see, e.g. [PJ).

It is clear, when p(z) has the form (5.3), that the associated genera-

lized exponentials are the exponential solutions of the scalar neutral

functional equation
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w(t+W) + c0w(t-w) +k.1 ck(t+9) + J f(s)w(t+s)ds - 0. (5.6)

As such, these generalized exponentials, restricted to C-w,w], are the genera-

lized eigenfunctions of the operator

(Aw)(x) - v'(x) (5.7)

with (A) consisting of those functions w in the Sobolev space Rl[-,w]

which satisfy the boundary condition

w(T) + cOW(-T) ckw(Lk ) + f(s)w(s)ds - 0. (5.8)

It Is well known that when co * 0, which we assume, the operator (5.7) genera-

tes a strongly continuous group of bounded operators on L2[-:,w). This group

has been studied in (Q], where it has also been shown that there is a very

strong connection between any exponential Ries: basis for L2[-,w] and a

corresponding group of restricted shifts, or translations. This is another

topic which we hope to return to at another time.

In this connection it is, of course clear that our methods are quite simi-

lar to the methods used for studying the spectral properties of differential

operators which involve various contour Integration methods applied to the

resolvent operator (z-A)- l  (see [R), e.g.). The meromorphic function

1/p(z) plays mich the same role as the resolvent does in that theory. In fact

it Is shown in (Q] that for p(z) having the form (5.3), and A the operator

(5.7) with domain characterized by the boundary condition (5.8), that for

- (v) a P, we have

#(z) - ((:1-A)-l w)(0).

If one forms the distributional solution w(t) of
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am!
v(t+w) + +C ct-4-) + j&C f(s)V(t+s)ds 6

C0~-) k-i k - (0)

it may be seen that l/p(z) is the Laplace transform of v. This leads to the

formula.

1~z . ((zI - A)- a5(o)(0).

if (z1-A)-l is appropriately extended to 1r[ww, which includes the

distribution 6(0).
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